

Betriebsanleitung Fördersysteme

Betriebsanleitung vor Inbetriebnahme unbedingt lesen!

Sicherheitshinweise beachten!

Für künftige Verwendung aufbewahren! Diese Dokumentation unterliegt keinem Änderungsdienst!

ORIGINAL BETRIEBSANLEITUNG MISUMI Europa GmbH DEUTSCH – Februar 2022

Diese Betriebsanleitung ist gemäß EG-Maschinenrichtlinie Bestandteil der technischen Dokumentation der Maschine.

Die vorliegende Betriebsanleitung entspricht der "Richtlinie 2006/42/EG des Europäischen Parlaments und des Rates zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten für Maschinen" (Maschinenrichtlinie), Anhang I, Punkt 1.7.4. für vollständige Maschinen und Anhang VI für unvollständige Maschinen.

Die EG-Konformitätserklärung bzw. EG-Einbauerklärung befinden sich im Anhang dieser Betriebsanleitung.

Die vorliegende Betriebsanleitung ist an den Werksverantwortlichen gerichtet, der sie dem für die Aufstellung, den Anschluss, die Anwendung und die Wartung der Maschine verantwortlichen Personal übergeben muss.

Er muss sich vergewissern, dass die in der Betriebsanleitung und in den beiliegenden Dokumenten enthaltenen Informationen gelesen und verstanden wurden.

Die Betriebsanleitung muss an einem bekannten und leicht erreichbaren Ort aufbewahrt und stets griffbereit gehalten werden und muss auch bei geringstem Zweifel zu Rate gezogen werden.

Informationen

Der Hersteller übernimmt keine Haftung für Schäden an Personen, Tieren oder Sachen sowie an der Maschine selbst, die durch unsachgemäße Anwendung, durch Nichtbeachtung oder ungenügende Beachtung der in dieser Betriebsanleitung enthaltenen Sicherheitskriterien entstehen bzw. durch Abänderung der Maschine oder der Verwendung von nicht geeigneten Ersatzteilen verursacht werden.

Das Copyright für die Betriebsanleitung liegt ausschließlich bei

oder bei deren rechtlichem Nachfolger.

Die vorliegende Betriebsanleitung darf nur mit schriftlicher Genehmigung vervielfältigt oder an Dritte weitergegeben werden. Dies trifft auch dann zu, wenn von der Betriebsanleitung nur Auszüge kopiert oder weitergeleitet werden. Dieselben Bedingungen bestehen für die Weitergabe der Betriebsanleitung in digitaler Form.

Stand: Februar 2022

Piktogramme & Signalwörter

Nachfolgende Piktogramme und Signalwörter werden in der vorliegenden Dokumentation verwendet. Die Kombination eines Piktogramms und eines Signalwortes klassifiziert den jeweiligen Sicherheitshinweis. Das Symbol kann je nach Gefahrenart variieren.

	Symbol	Signalwort	Erläuterung
Tod	A	Gefahr	Dieses Signalwort muss verwendet werden, wenn Tod oder irreversible Gesundheitsschädigungen unter Nichtbeachtung des Gefahrenhinweises eintreten können.
erletzung chschäden	\triangle	Warnung	Dieses Signalwort weist auf Personenschäden und Sachschäden hin, einschließlich Verletzungs-, Unfall- und Gesundheitsrisiken.
Verle	\triangle	Vorsicht	Dieses Signalwort gibt einen Hinweis auf Gefahr von Sachschäden. Zusätzlich besteht ein geringes Verletzungsrisiko.
Keine Schäden		Achtung	Dieses Signalwort darf nur verwendet werden, wenn keine gesundheitlichen Schäden auftreten können. Es warnt vor Funktionsstörungen und steht ohne Symbol, da der Grad der Gefahr gering ist.
Keine	•	Wichtig	Dieses Signalwort weist auf Bedienungserleichterungen und Querverweise hin. Es schließt jegliche Gefahren von Sachschaden oder Verletzungsrisiko aus und steht deshalb ohne Warnsymbol.

Zielgruppe

Die Betriebsanleitung richtet sich an Personal mit folgenden Kompetenzgebieten:

Arbeitsbereich	Kompetenz
Transport	Fachpersonal
Montage/ Installation/ Demontage/ Inbetriebnahme	Fachpersonal
Betrieb/ Außerbetriebnahme	Unterwiesenes Personal
Rüsten	Fachpersonal
Wartung und Instandhaltung	Fachpersonal
Störungsbeseitigung	Fachpersonal

Definition nach EN 60204-1:

Unterwiesenes Personal

Eine Person, die durch eine Fachkraft über die ihr übertragenen Aufgaben und die möglichen Gefahren bei unsachgemäßem Verhalten unterrichtet und erforderlichenfalls angelernt sowie über die notwendigen Schutzeinrichtungen und Schutzmaßnahmen belehrt wurde.

Fachpersonal

Eine Person, die aufgrund ihrer fachlichen Ausbildung, Kenntnisse und Erfahrungen sowie Kenntnis der einschlägigen Normen die ihr übertragenen Arbeiten beurteilen und mögliche Gefahren erkennen kann.

Archivierung

Die Betriebsanleitung als Teil der technischen Dokumentation wird als Nachweisdokument beim Hersteller für mindestens 10 Jahre aufbewahrt!

Geltungsbereich EG-Konformitäts-/Einbauerklärung

Die vorliegende Betriebsanleitung gilt für die in Kapitel 1 ab Seite 2 beschriebenen Fördersysteme in den benannten Konfigurationsmöglichkeiten.

In der Regel werden die MISUMI Europa GmbH-Förder-systeme einbaufertig mit CE-Kennzeichnung und EG-Konformitätserklärung ausgeliefert. Bei individuellen Kundenanforderungen liefert die MISUMI Europa GmbH auch Fördersysteme ohne Antrieb und/oder ohne Förderriemen aus!

Im Anhang, Kapitel 11, dieser Betriebsanleitung befinden sich aus diesem Grund sowohl eine EG-Konformitäts-erklärung für vollständige Maschinen, als auch eine EG-Einbauerklärung für unvollständige Maschinen.

Geltungsbereich EG-Konformitätserklärung

Die EG-Konformitätserklärung gilt für komplette Fördersysteme (mit Antrieb und Riemen) sowie für Fördersysteme ohne Riemen unter Berücksichtigung der Anforderungen in den Kapiteln 4.4 und 8.2. Die Fördersysteme tragen eine CE-Kennzeichnung.

Geltungsbereich EG-Einbauerklärung

Die EG-Einbauerklärung gilt für Fördersysteme ohne Antrieb. Die Fördersysteme tragen keine CE-Kennzeichnung.

Inhalt

CVSEE

4.3.23

23

1.	Identifikation	2	4.3.24	CVSFE	23
			4.3.25	CVSXE	24
1.1	MISUMI-Artikelnummern-System	2	4.3.26	CVSYE	24
1.2	Bestimmungsgemäße Verwendung	3	4.3.27	CVSFAE	25
1.3	Sachwidrige Verwendung	3	4.3.28	CVSFBE	25
			4.3.29	CVSFCE	26
2.	Allgemeine Hinweise	4	4.3.30	CVSFDE	26
2.1	Gewährleistung und Haftung	4	4.3.31	CVSJAE	27
			4.3.32	CVSMAE	27
2.2	Ziele der Betriebsanleitung	4	4.3.33	CVLPAE	28
2.3	Symbole	4	4.3.34	CVMAE	28
2.3.1	Gebotszeichen	4	4.3.35	CVMBE	29
2.3.2	Warnzeichen	4	4.3.36	CVSTCE	29
2.3.3	Verbotszeichen	4	4.3.37	CVSTRE	30
2.3.4	Gefahrenzeichen	4	4.3.38	CVGTAE	30
			4.3.39	CVGTNE	31
3.	Sicherheitshinweise	5	4.3.40	CVGTNE CVGTPE	31 32
3.1	Geltungsbereich	5	4.3.41 4.3.42	CVSPAE	32
3.1.1	Pflichten	5	4.3.43	CVSSAE	33
3.1.2	Pflichten des Betreibers	5	4.3.43	CVDSAE	33
3.1.3	Pflichten des Bedienpersonals	6	4.3.45	CVDSBE	34
3.2	Gefahren/Restgefahren	6	4.3.46	CVSPCE	34
3.2.1	Gefahren – Emissionen	7			
3.2.2	Gefahren – mechanische Energie	7	4.4	Riemen	35
3.3	Notfall-Situationen	8	4.4.1	Technische Daten – Riemen	35
3.3	Notiali-Situationen	0	4.4.2	Austausch von Riemen/Kunststoffketten	38
			4.5	Komponenten – Elektrik/Steuerung	41
4.	Aufbau und Funktion	9	4.5.1	Antriebsmotor	41
4.1	Technische Daten	9	4.5.2	Elektrischer Drehzahlregler	41
4.2	Fördersystem-Typen	9	4.6	Schutzabdeckungen	42
4.2.1	Montagevarianten Antriebsmotor	9	4.7	Häufig gestellte Fragen (FAQ)	42
4.2.2	Riemenförderer	9			
4.2.3	Kettenförderer	10	5.	Transport, Montage, Anschluss	43
4.2.4	Zahnriemenförderer	10	5.1	Transport	43
4.3	Fördersystem-Konfigurationen	10		•	
4.3.1	SVKAE	12	5.2	Montage	43
4.3.2	SVKBE	12	5.2.1	Auspacken und Aufstellen	43
4.3.3	SVKNE	13	5.2.2	Fördersystem ausrichten	44
4.3.4	SVKRE	13	5.3	Betriebsbedingungen	44
4.3.5	GVHAE	14	5.4	Anschluss	44
4.3.6	GVFAE	14	5.4.1	Anschlussstellen der Maschine	45
4.3.7	GVHNE	15	5.5	Anschlussplan	47
4.3.8	GVFNE	15	5.5.1	Motorhersteller A (Panasonic-Motor)	47
4.3.9	GVTSAE	16	5.5.2	Motorhersteller B (Oriental-Motor)	48
4.3.10	GVTSNE	16	5.6	Anschluss Fremdantrieb	49
4.3.11	GVTWAUE	17	5.6.1	Maximal zulässiges Drehmoment	49
4.3.12	GVTWASE	17	5.6.2	Maximal zulässige Fördergeschwindigkeit	49
4.3.13	GVTWNUE	18	5.6.3	Abmessungen Antriebsmotor	49
4.3.14	GVTWNSE	18	5.6.4	Antriebsmotor-Adapterplatten	51
4.3.15	CVGAE	19	5.0.4	Authoromotor Adaptorplatter	JI
4.3.16	CVGCE	19	•	Padianung	F0
4.3.17	CVGNE	20	6.	Bedienung	
4.3.18	CVGRE	20	6.1	Inbetriebnahme	52
4.3.19	CVGBE	21	6.2	Funktionskontrollen vor Betrieb	52
4.3.20	CVGDE	21	6.3	Fördersystem einschalten	52
4.3.21	CVGPE	22			-
4.3.22	CVGWE	22	7.	Außerbetriebnahme	52

7.1	Fördersystem ausschalten	53	8.6.4	Kunststoffführungsschienen	60
7.2	Stillsetzen der Maschine	53	8.6.5	Führungsschienen-Halterungen	60
7.3	Lagerung der Maschine	53	8.6.6	Transferwalzen	61
			8.6.7	Kunststoffabdeckungen	61
7.4	Entsorgung der Maschine	54	8.7	Ersatzteile	61
8.	Rüstung und Zubehör	55	8.8	Bestellung	61
8.1	Antrieb wechseln	55	9.	Wartung	62
8.2	Riemen wechseln	55	9.1	Reinigung des Fördersystems	63
8.2.1	Riemen wechseln - Kopfantrieb	56		,	
8.2.2	Riemen wechseln – Mittelantrieb	57	9.2	Verpacken von Maschinenteilen	63
8.2.3	Riemen wechseln – Integrierter Antrieb	58	9.3	Wartungshinweise	63
8.3	Mäandrierkorrektur	58	9.4	Beenden der Wartungsarbeiten	64
8.3.1	Mäandrierkorrektur Kopfantrieb-Förderer	58			
8.3.2	Mäandrierkorrektur Mittelantrieb-Förderer	59	10.	Störungsbeseitigung	65
8.3.3	Mäandrierkorrektur – Integrierter Antrieb	59	10.1	Ablauf bei Betriebsstörungen	65
8.4	Riemen spannen	59	10.2	Störungen beheben	65
8.5	Wiederinbetriebnahme	59	10.3	Häufig gestellte Fragen (FAQ)	66
8.6	Zubehör	60	10.0	ridding goddino r ragon (r rid)	
8.6.1	Tischständer	60	EG-Kon	formitätserklärung	67
8.6.2	Montagehalterungen (Stützen)	60		pauerklärung	
8.6.3	Metallführungsschienen	60		· ·	

1. Identifikation

Bezeichnung	Fördersysteme*
	Fördersystem (komplett)
	Fördersystem ohne Antrieb
	Fördersystem ohne Riemen
	Fördersystem ohne Antrieb/ohne Riemen
Baujahr	2022
Lebensdauer	 10.000 Std. Typisch 5 Jahre (8 h/Tag, 5 Tage/Woche bei konstanter Last) unter normalen Betriebsbedingungen
	Erhöhte Last, Verschmutzung, Abrieb oder Hitze können diese Werte beeinträchtigen!

Hersteller	MISUMI Europa GmbH Franklinstraße 61–63 60486 Frankfurt am Main Germany
Email	Mail.tech@misumi-europe.com
Web	www.misumi-europe.com

^{*} Die vorliegende Betriebsanleitung gilt für verschiedene Fördersystem-Konfigurationen gleichermaßen! Auf Unterschiede im Geltungsbereich wird ggf. am Anfang des jeweiligen Kapitels hingewiesen!

1.1 MISUMI-Artikelnummern-System

MISUMI-Artikelnummern enthalten in codierter Form die grundsätzlichen technischen Größen und Kennwerte des Fördersystems.

XXXX—100—1000—25—TA230—IM—25—H—C

XXXX	Typenbezeichnung des Förderers
100	Breite in mm
1000	Länge in mm
25	Motorabgabeleistung in Watt
TA230	Indikator für Betriebsspannung in V
IM/SCM	Indikator der Regelungsvariante
25	Indikator des Übersetzungsverhältnisses
Н	Indikator der Riemenspezifikation
С	Indikator des Motorhersteller

Entsprechend der Konfiguration des Fördersystems unterscheiden sich auch die Artikelnummern. Nachfolgend wird exemplarisch die Code-Logik beschrieben.

Fördersystem (komplett)

SVKAE-100-500-25-TA230-SCM-12.5-H-B

SVKAE Typenbezeichnung des Förderers

100 Breite in mm 500 Länge in mm

25 Motorabgabeleistung in Watt TA230 (230V/50 Betriebsspannung in V

Hz)

SCM (Regelmotor) Regelungsvariante

12,5 Getriebeübersetzungsverhältnis

H Riemenspezifikation B (Oriental motor) Motorhersteller

Fördersystem ohne Antrieb

SVKAE-100-500-25-[NV]-[NM]-[NH]-H-[R]*

SVKAE Typenbezeichnung des Förderers

100 Breite in mm 500 Länge in mm

25 Motorabgabeleistung in Watt
Betriebsspannung in V
Regelungsvariante

Getriebeübersetzungsverhältnis

H Riemenspezifikation
- Motorhersteller

Fördersystem ohne Riemen

SVKAE-100-500-25-TA230-SCM-12.5-[J]-B

SVKAE Typenbezeichnung des Förderers

100 Breite in mm 500 Länge in mm

25 Motorabgabeleistung in Watt TA230 (230V/50 Betriebsspannung in V

Hz)

SCM (Regelmotor) Regelungsvariante

12,5 Getriebeübersetzungsverhältnis

- Riemenspezifikation B (Oriental motor) Motorhersteller

Fördersystem ohne Antrieb/ohne Riemen

SVKAE-100-500-25-[NV]-[NM]-[NH]-[J]-[R]

SVKAE Typenbezeichnung des Förderers

100 Breite in mm 500 Länge in mm

25 Motorabgabeleistung in Watt
 Betriebsspannung in V
 Regelungsvariante

- Getriebeübersetzungsverhältnis

- Riemenspezifikation - Motorhersteller

^{*} ohne Motor, ohne Getriebekopf, ohne Passfedern

Bestimmungsgemäße Verwendung

Die Fördersysteme dienen ausschließlich dem linearen Transport in definierter Förderrichtung von festem Fördergut, welches den spezifischen Traglasten und Materialeigenschaften des jeweiligen Riemens entspricht. Das Fördergut wird auf das Fördersystem aufgebracht und über die gesamte Riemenlänge transportiert.

Bei Fördersystemen, die ohne Förderriemen geliefert wurden, gehört zur bestimmungsgemäßen Verwendung, dass diese niemals ohne verbauten Förderriemen in Gang gesetzt werden. Der eingesetzte Riemen ist entweder ein Original-MISUMI-Zubehörteil oder aber ein Förderriemen, dessen technische Merkmale (siehe hierzu Kapitel 4.4, ab Seite 35) denen der Original-MISUMI-Förderriemen entsprechen.

Bei Fördersystemen, die ohne Antriebsmotor geliefert wurden, gehört zur bestimmungsgemäßen Verwendung, dass die betreiberseitig beigestellten Antriebsmotoren, die in Kapitel 4.5.1, ab Seite 41 angegebenen technischen Vorgaben erfüllen.

Die Fördersysteme sind ausschließlich für den Einsatz in einer nicht explosionsfähigen Atmosphäre bestimmt.

Eine andere oder erweiterte Nutzung der Maschinen gilt als nicht bestimmungsgemäß und damit sachwidrig. In diesem Fall kann die Sicherheit und deren Schutz beeinträchtigt werden. Für hieraus entstehende Schäden haftet das Unternehmen MISUMI Europa GmbH nicht.

Zur bestimmungsgemäßen Verwendung gehört auch:

- das Beachten aller Hinweise der Betriebsanleitung
- das Beachten aller Sicherheitshinweise
- die Einhaltung der Inspektions- und Wartungsarbeiten

1.3 Sachwidrige Verwendung

Sachwidrige Verwendungen, die Gefahren für den Benutzer, Dritte oder für die Maschinen mit sich bringen können, sind für alle Betriebsarten:

- die Verwendung der Fördersysteme und ihrer elektrischen Ausrüstungen entgegen der bestimmungsgemäßen Verwendung (1.1),
- das Zuführen von nicht freigegebenem Transportgut, wie z. B. Sand, Kies und alle anderen granularen Fördergüter, und/oder von Werkstückträgern, deren Form und Abmaß von den für die Fördersysteme vorgesehenen Form und Abmaßen abweicht,
- das Mitfahren von Personen oder Tieren,
- das Betreiben der Fördersysteme im Reversierbetrieb.
- das Betreiben der Fördersysteme außerhalb der in Kapitel "Betriebsbedingungen" ab Seite 44, beschriebenen physikalischen Einsatzgrenzen,
- die Änderung der Steuerungssoftware ohne vorherige Absprache mit der MISUMI Europa GmbH,
- Veränderungen an den Fördersystemen sowie Anund Umbauten ohne vorherige Absprache mit der MISUMI Europa GmbH,

- das Betreiben der Fördersysteme entgegen den Bestimmungen der Betriebsanleitung bezüglich Sicherheitshinweisen, Installation, Betrieb, Wartung und Instandhaltung, Rüsten und Störungen,
- das Überbrücken oder Außerbetriebnehmen von Sicherheits- und Schutzvorkehrungen der Fördersys-
- das Betreiben der Fördersysteme bei/mit offensichtlichen Störungen,
- Reparatur-, Reinigungs- und Wartungsarbeiten, ohne dass die Fördersysteme ausgeschaltet wurden.

WARNUNG

Gefahr durch unsachgemäße Verwendung

Es bestehen Gefahren (Störung des Betriebes, Verletzungen) durch sachwidrige Verwendung der Maschine.

Maschine ausschließlich laut bestimmungsgemäßem Verwendungszweck benutzen!

WARNUNG

Gefahr durch unzulässige Änderungen

Es bestehen Gefahren durch eigenmächtige Veränderungen an der Maschine und den Einsatz von Ersatzteilen fremder Hersteller.

Ausschließlich Originalersatz- und Verschleißteile des Herstellers verwenden!

Keine Veränderungen, An- oder Umbauten an der Maschine ohne Genehmigung der MISUMI Europa GmbH vornehmen! Dies gilt auch für das Schweißen an tragenden Bauteilen!

2. Allgemeine Hinweise

2.1 Gewährleistung und Haftung

Grundsätzlich gelten die "Allgemeinen Verkaufs- und Lieferbedingungen" der MISUMI Europa GmbH. Diese stehen dem Betreiber spätestens seit Vertragsabschluss zur Verfügung.

Gewährleistungs- und Haftungsansprüche bei Personenund Sachschäden sind ausgeschlossen, wenn sie auf eine oder mehrere der nachfolgenden Ursachen zurückzuführen sind:

- sachwidrige Verwendung der F\u00f6rdersysteme
- unsachgemäßes Montieren, Inbetriebnehmen, Bedienen und Warten der Fördersysteme
- Betreiben der Fördersysteme bei defekten Sicherheitseinrichtungen
- Missachten der Hinweise in der Betriebsanleitung
- eigenmächtige bauliche Veränderungen der Fördersysteme
- mangelhafte Wartungs-, Reparatur- und Instandhaltungsmaßnahmen
- Katastrophenfälle durch Fremdkörpereinwirkung oder höhere Gewalt

2.2 Ziele der Betriebsanleitung

Diese Betriebsanleitung dient als Unterstützung und beinhaltet alle notwendigen Hinweise, die für die allgemeine Sicherheit, den Transport, Installation, Betrieb, Wartung und Rüstung beachtet werden müssen.

Diese Betriebsanleitung mit allen Sicherheitshinweisen (sowie alle zusätzlichen Dokumente der Baugruppen von Fremdlieferanten) muss:

- von allen Personen, die an der Maschine arbeiten, beachtet, gelesen und verstanden werden (insbesondere Kenntnis der Sicherheitshinweise)
- für jeden frei zugänglich sein
- im geringsten Zweifel (Sicherheit) zu Rate gezogen werden.

2.3 Symbole

GEFAHR

Gefahr durch Missachtung der Sicherheitssymbole

Es bestehen Gefahren durch Missachtung der Warnhinweise und –symbole an der Maschine und in der Betriebsanleitung.

Warnhinweise und -symbole beachten!

Nachfolgende spezielle Sicherheitssymbole nach DIN 4844-2 werden an entsprechenden Textstellen in dieser Betriebsanleitung und an Gefahrenstellen an der Maschine verwendet und fordern je nach Kombination von Signalwort und Symbol besondere Aufmerksamkeit.

2.3.1 Gebotszeichen

Schutzkleidung verwenden!

Vom Netz trennen!

Kopfschutz verwenden!

Handschutz verwenden!

Sicherheitsschuhe verwenden!

Schutzbrille tragen!

Zustand sichern!

Vor Arbeiten freischalten!

Zusatzinformationen beachten!

Dokumentation beachten!

2.3.2 Warnzeichen

Heiße Oberfläche

Gefährliche elektrische Spannung

Absturzgefahr

Rutschgefahr

Quetschgefahr

Handverletzungen

Explosionsfähige At-

Automatischer Anlauf

Schwebende

Last

mosphäre

Gesundheitsschädliche oder reizende Stoffe

Einzugsgefahr

dende Emissionen

Feuergefährliche Stoffe

Gefahrstelle

Kippende Lasten

2.3.3 Verbotszeichen

Zutritt für Unbefugte verboten

Feuer, offenes Licht und Rauchen verboten

Abstellen oder Lagern verboten

Betreten verboten

Mit Wasser löschen verboten

Nicht unter angehobene Last treten

2.3.4 Gefahrenzeichen

umweltgefährlich

3. Sicherheitshinweise

3.1 Geltungsbereich

GEFAHR

Gefahr durch Missachtung der Sicherheitshinweise

Es bestehen Gefahren bei Missachtung der Betriebsanleitung und aller darin befindlichen Sicherheitshinweise.

Betriebsanleitung vor erster Inbetriebnahme sorgfältig lesen! Geforderte Sicherheitsbedingungen vor erster Inbetriebnahme erfüllen!

Allgemeine Sicherheitshinweise und auch die in den anderen Kapiteln und Komponentendokumentationen eingefügten speziellen Sicherheitshinweise beachten!

Sicherheitshinweise an der Maschine beachten!

Die Maschine ist nach dem neuesten Stand der Technik und nach anerkannten sicherheitstechnischen Regeln gebaut. Um bei deren Verwendung Gefahren für Leib und Leben des Benutzers, Dritter oder der Maschine auszuschließen, verwenden Sie die Maschine ausschließlich für den bestimmungsgemäßen Gebrauch und im offensichtlich sicherheitstechnisch einwandfreien Zustand.

Sach- und Personenschäden, die darauf zurückzuführen sind, dass die in der Betriebsanleitung gegebenen Anweisungen nicht beachtet wurden, verantwortet der Maschinenbetreiber oder die von ihm beauftragten Personen. Störungen, die die Sicherheit beeinträchtigen könnten, sind umgehend zu beseitigen.

Alle Sicherheits- und Gefahrenhinweise an der Maschine sind zu beachten und ständig in gut lesbarem Zustand zu halten.

3.1.1 Pflichten

GEFAHR

Gefahr durch nachlässiges Verhalten an der Maschine

Trotz zahlreicher Schutz- und Sicherheitseinrichtungen bestehen Gefahren bei nachlässigem Verhalten an der Maschine.

Stets mit großer Sorgfalt und Vorsicht an der Maschine arbeiten! Die Missachtung der Sicherheitshinweise führt zum Verlust jeglicher Schadensersatzansprüche!

Folgende Gegebenheiten können das Gefährdungspotential der Maschine erhöhen:

- Versagen wichtiger Funktionen der Maschine
- Versagen vorgeschriebener Methoden zur Wartung, Instandhaltung
- Gefährdung von Personen durch elektrische, mechanische Einwirkung.

3.1.2 Pflichten des Betreibers

Ein sicherheitsbezogener Zustand und Einsatz der Maschine ist die Voraussetzung für ein gefahrloses Betreiben der Maschine. Deshalb hat der Maschinenbetreiber die Pflicht darauf zu achten, dass folgende Punkte eingehalten werden:

- Stellen Sie sicher, dass die Maschine ausschließlich von ausgebildetem und autorisiertem Personal betrieben wird! Beachten Sie das gesetzlich zulässige Mindestalter!
- Verbieten Sie sicherheitsgefährdende und gefährliche Arbeitsweisen! Überprüfen Sie gegebenenfalls das Handeln des Personals!
- Lassen Sie zu schulendes, anzulernendes, einzuweisendes oder im Rahmen einer allgemeinen Ausbildung befindliches Personal nur unter ständiger Aufsicht einer erfahrenen Person an der Maschine tätig werden!
- Lassen Sie sich vom Personal durch eine Unterschrift bestätigen, dass die Betriebsanleitung verstanden wurde!
- Gewährleisten Sie, dass sich ein Exemplar der vollständigen Betriebsanleitung permanent griffbereit an der Maschine befindet!
- Kontrollieren Sie regelmäßig den vollständigen und lesbaren Zustand der Betriebsanleitung!
- Schreiben Sie für Tätigkeiten mit erhöhtem Verletzungsrisiko das Tragen von entsprechender Schutzkleidung vor!
- Legen Sie entsprechend der verschiedenen Aufgabenbereiche (Betrieb, Wartung) die Zuständigkeiten genau fest!
- Verpflichten Sie das Bedien- und Wartungspersonal auftretende und erkennbare Sicherheitsmängel sofort an ihren Vorgesetzten zu melden!

GEFAHR

Lebensgefahr durch menschliches Fehlverhalten an der Maschine und Arbeiten mit fehlender Qualifikation

Es bestehen Gefahren durch falsche Bedienung aufgrund fehlender Qualifikation oder generelles menschliches Fehlverhalten an der Maschine.

Der Betreiber muss mit Betriebsanweisungen das Arbeiten an der Maschine verbindlich regeln!

Wartungs-, Reinigungsarbeiten und Störungsbeseitigung nur durch Fachpersonal durchführen lassen!

Arbeiten an der elektrischen Versorgung nur von Fachpersonal durchführen lassen!

An der Maschine arbeitendes Personal in regelmäßigen Abständen schulen und auf die eingebauten Sicherheitseinrichtungen aufmerksam machen!

WARNUNG

Verletzungsgefahr durch fehlenden Riemen

Es besteht Verletzungsgefahr, wenn der Förderriemen nicht aufgelegt ist und so bei eingeschaltetem Fördersystem bewegte Komponenten erreicht werden können.

Während des Riemenwechsels oder bei nicht aufgelegtem Riemen muss das Fördersystem sicher von der elektrischen Spannungsversorgung getrennt sein!

Fördersystem niemals ohne Riemen einschalten, da dieser gleichzeitig eine trennende Schutzeinrichtung darstellt!

3.1.3 Pflichten des Bedienpersonals

Das Bedienpersonal ist verpflichtet, durch das persönliche Verhalten zur Verhinderung von Arbeitsunfällen und deren Folgen beizutragen.

WARNUNG

Es bestehen Gefahren für Personen und den ordnungsgemäßen Betrieb durch unzureichend qualifiziertes Personal.

Anlage ausschließlich durch unterwiesenes Personal bedienen lassen! Neues Bedienpersonal muss vom vorhandenen Bedienpersonal eingearbeitet werden! Verantwortungsbereich, Zuständigkeit und Überwachung des Personals durch den Betreiber genau regeln lassen!

Das Personal für oben genannte Kompetenzgebiete muss die entsprechende Qualifikation für diese Arbeiten aufweisen (Schulung, Unterweisung). Dies kann, falls erforderlich, im Auftrag des Betreibers durch den Hersteller erfolgen! Bei Missachtung erlöschen alle Gewährleistungsansprüche!

WARNUNG

Gefahr durch nicht ordnungsgemäßem Zustand der Maschine

Es bestehen Gefahren an der Maschine durch Störungen oder Fehlfunktionen, u. a. an den Sicherheitseinrichtungen.

Einmal pro Schicht den ordnungsgemäßen Zustand der Sicherheitseinrichtungen, der Versorgungsleitungen und den Gesamtzustand der Maschine überprüfen!

Maschine nicht einschalten und gegen versehentliche Inbetriebnahme sichern!

3.2 Gefahren/Restgefahren

An den Fördersystemen können im Störungsfall oder auch bei normalem Betrieb verschiedene Gefahrensituationen aufgrund freigesetzter Energie auftreten.

In Kabeln und Einrichtungen der Betriebsmittel befindet sich auch nach dem Abschalten noch Restenergie.

Achtung

Es können trotz aller getroffenen Vorkehrungen nicht offensichtliche Restrisiken bestehen!

Restrisiken können reduziert werden, indem die Sicherheitshinweise, die bestimmungsgemäße Verwendung sowie die Betriebsanleitung und Betriebsanweisungen insgesamt beachtet werden!

Für die Belange des Arbeitsschutzes ist eine Betriebsanweisung erforderlich, die der Betreiber erstellen muss!

Gefahrenquelle	Beispiel
elektrische Energie	Elektronische Bauteile und frei zugängliche stromführende Baugruppen
mechanische Energie	Antriebswellen, Riemen und Ketten
thermische Energie	Heiße Oberflächen von Motoren
Restenergien	Mechanische und elektrische Restenergie nach Abschalten der Anlage
Emissionen	Luftschall (Lärm)

GEFAHR

Lebensgefahr durch Stromschlag durch defekte elektrische Teile, bei Berührung spannungsführender Teile, menschliches Fehlverhalten und fehlende Qualifikation

Es bestehen Gefahren durch elektrische Energie und Restenergie. Es verbleibt für ca. 5 Minuten elektrische Restenergie in Leitungen, Einrichtungen und Geräten, wenn die Maschine ausgeschaltet wird.

Im Schaltkasten und an Anschlussstellen der elektrischen Komponenten können spannungsführende Teile frei zugänglich sein!

Fördersystem vor Beginn der Arbeiten elektrisch freischalten und gegen unabsichtliches und unbefugtes Wiedereinschalten sichern!

Arbeiten an der elektrischen Versorgung oder frei zugänglichen stromführenden Bauteilen nur von Elektro-Fachpersonal durchführen lassen!

Zuwiderhandlungen (z.B. frei zugängliche Kontakte, falsches Auflegen des Erdleiters etc.) können zu elektrischen Schlägen und in der Folge zu schwersten Verletzungen bis hin zum Tod führen!

WARNUNG

Verbrennungsgefahr durch heiße Oberflächen

Bei Berührung der Außengehäuse der Motoren während des Betriebs und auch nach dem Abschalten besteht Verletzungsgefahr durch heiße Oberflächen.

Sicherheitsabstand einhalten und entsprechende Schutzkleidung tragen!

3.2.1 Gefahren – Emissionen

Der Dauerschalldruckpegel der Fördersysteme beträgt maximal <70 dB(A). Abhängig von den örtlichen Bedingungen kann ein höherer oder niedrigerer Schalldruckpegel entstehen

Das Transportieren des Fördergutes oder die Riemenbeschaffenheit kann einen höheren Schallpegel erzeugen. Der Schalldruckpegel muss betreiberseitig überwacht werden und gegebenenfalls sind geeignete Schutzmaßnahmen zu ergreifen. Für diese Fälle können Lärmschutzmaßnahmen beim Hersteller angefragt werden.

WARNUNG

Verletzungsgefahr durch Lärm

Es können Gehörschädigungen durch den von der Maschine ausgehenden Dauerschalldruckpegel auftreten.

Vor Lärmschwerhörigkeit mit einem Ohrenschutz schützen!

An den Förderer treten keine weiteren Emissionen auf.

3.2.2 Gefahren – mechanische Energie

WARNUNG

∧ c

Quetschgefahr und Handverletzungen

Es besteht Verletzungsgefahr, wenn man zwischen bewegten Komponenten, wie Transportkette oder -riemen und feststehende Maschinenkomponenten gelangt.

Während des Betriebes ist es strengstens verboten, in die Wirkbereiche der Maschine zu fassen oder zu treten! Beim Reinigen, Rüsten, Warten oder bei der Störungsbeseitigung ist auf bestehende Quetschgefahren zu achten!

Arbeiten an der Maschine sind nur durch Fachpersonal und nur bei Maschinenstillstand erlaubt!

Persönliche Schutzausrüstung tragen!

WARNUNG

Gefahr durch Erfassen, Aufwickeln durch Fördersysteme (überstehendes Fördergut, bewegte Werkstückträger, Ketten und Riemen)

Es bestehen Gefahren des Quetschens von Körperteilen in allen Lebensphasen der Maschinen, wenn Kleidung, Gliedmaße, Haare oder Werkzeuge erfasst oder eingezogen werden. Insbesondere in Gefahrenbereichen von Kraftübertragungselementen oder Umlenkstellen der Fördersysteme.

Fördergut auf Werkstückträgern so positionieren, dass dieses zu keinem Zeitpunkt eine Gefahr für Personal oder Maschine darstellt!

Maschine niemals ohne Sicherheitseinrichtungen (mechanische und elektronische) betreiben! Sicherheitseinrichtungen nur überbrücken oder demontieren, wenn es unbedingt notwendig ist!

Darauf achten, dass während der Inbetriebnahme keine unbefugten Personen Zugang zur Maschine erhalten!

Dritten das Betreten des Arbeits- und Servicebereichs verbieten!

Enganliegende Schutzkleidung tragen!

Persönliche Schutzausrüstung tragen!

WARNUNG

Bei sich aufstauendem Fördergut können bei der Ursachenbeseitigung Finger und Hände durch Staudruck zwischen dem Fördergut gequetscht werden oder es kann Fördergut vom Fördersystem auf die Füße fallen.

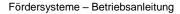
Bei Störungen ist der Förderer umgehend abzuschalten!

Verklemmtes oder verkeiltes Transportgut mittels Hilfsmittel (z. B. Pinzette) entfernen! Niemals mit der ungeschützten Hand!

Persönliche Schutzkleidung tragen!

WARNUNG

Absturzgefahr bei Beförderung von Personen



Es bestehen Gefahren, wenn sich Personen auf die Förderer stellen oder sich transportieren lassen.

Niemals auf laufende oder stehende Fördersysteme steigen oder mitfahren!

Dritten den Aufenthalt verbieten!

Zugang zum Fördersystem absichern!

3.3 Notfall-Situationen

Wichtig

In regelmäßigen Abständen eine Erste-Hilfe-Schulung besuchen!

Den Betriebsanweisungen des Betreibers der Anlage hinsichtlich des Verhaltens in Notfällen (Brand, Unfall) ist in jedem Fall Folge zu leisten. Die nachfolgenden Angaben sind lediglich allgemeingültige Verhaltens-Empfehlungen der Normen-Institute.

GEFAHR

Lebensgefahr durch Stromschlag

Bei Löschversuchen elektrischer Brände mit Wasser besteht Lebensgefahr durch Stromschlag.

Betriebsstoffbrände (Öle, Benzin, Lösungsmittel) sowie elektrische Brände niemals mit Wasser löschen!

Brandbekämpfung mit CO2!

Anlage – wenn möglich – vor Brandbekämpfung abschalten!

4. Aufbau und Funktion

Sicherheitshinweise

Sicherheitshinweise im Kapitel 3, "Sicherheitshinweise" sind zu beachten!

Zusätzlich sind alle Sicherheitshinweise und -symbole an den Fördersystemen und der im Anhang befindlichen Herstellerdokumentationen zu beachten.

4.1 Technische Daten

Nennspannung	230 V
tolerierte Spannungs- schwankungen	± 10 %
Frequenz	50 Hz
tolerierte Frequenz- schwankungen	1 %
Motor-Absicherung	6W/k. A.; 15W/0.4A; 25W/0.6A; 40W/1.0A; 60W/1.4A; 90W/2.0A
Art des Stromanschlusses	Festanschluss
Luftschall	≥ 55 ≤ 70 dB
elektromagnetische Ver- träglichkeit	entsprechend der EMV-Richtlinie und den gültigen EMV-Normen für den Einsatz im Industriebereich
explosionsfähige Atmosphäre	nein
Fördergeschwindigkeit	konstant oder regelbar

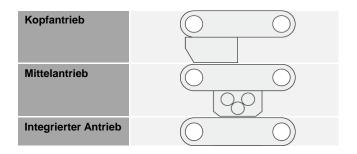
Technische Daten

Weiterführende Informationen und ausführliche Technische Daten zu den einzelnen Fördersystemen sind den nachfolgenden Beschreibungen sowie den jeweiligen Herstellerdokumentationen der Motoren zu entnehmen. Diese liegen dieser Betriebsanleitung bei!

4.2 Fördersystem-Typen

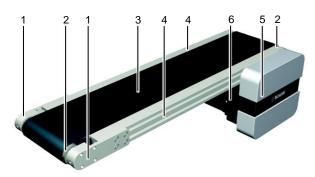
MISUMI bietet drei unterschiedliche Fördersysteme an, die sich in ihrer Bauform, abhängig von den Kundenanforderungen und vom Fördergut, grundlegend unterscheiden.

- Riemenförderer
- Kettenförderer
- Zahnriemenförderer


Die Fördersysteme bestehen je nach Typ (Flachriemen-, Synchronriemen-, Kunststoffketten-Förderer, etc.) und Konfiguration aus:

- einem individuellen Profilrahmen,
- einem Antriebsmotor mit oder ohne Drehzahlregler,
- Riemenumlenkrollen,
- Förderriemen.

Die Steuerung des Förderers erfolgt, abhängig vom Motor, durch Motorschutzschalter oder elektronische Steuergeräte.

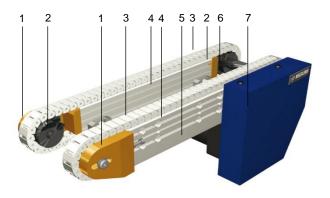

4.2.1 Montagevarianten Antriebsmotor

Es gibt drei Montagevarianten des Antriebs am Fördersystem.

4.2.2 Riemenförderer

Mechanischer Aufbau

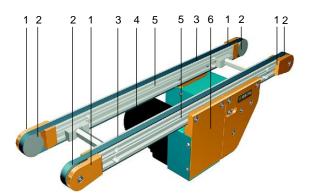
- Schutzabdeckung
- 2 Riemenumlenkrolle
- 3 Förderriemen
- Profilrahmen
- 5 Schutzabdeckung Antrieb
 - Antrieb (hier Kopfantrieb)


Besondere Merkmale

- Einspurig
- Geräuscharmer Transport
- Beförderung von Stückgütern
- Ergänzung zu Rollenbahnen
- Leicht mit anderen F\u00f6rdertechniken kombinierbar
- Voll im Rahmen integriertes Bandbett
- Riemenrückführung im Rahmen
- Lange Förderer-Ausführungen verfügen über Stützrollen im Unterturm
- Module können einfach miteinander kombiniert werden
- Geringer Wartungsaufwand
- Ausführung mit Riemenverlaufsschutzkeil verfügbar
- Ausführungen mit Messerkante verfügbar

4.2.3 Kettenförderer

Mechanischer Aufbau


- 1 Schutzabdeckung
- 2 Kettenrad
- 3 Kunststoffkette
- 4 Profilrahmen
- 5 Antrieb (hier Kopfantrieb)
- 6 Antriebswelle
- 7 Schutzabdeckung Antrieb

Besondere Merkmale

- Zweispurig
- Antrieb ist formschlüssig und schlupffrei
- Transport von schweren Lasten
- Ketten werden geführt und können nachgespannt werden
- Kettenstränge werden über eine Antriebswelle vom Motor angetrieben und gewähren so einen Synchronlauf

4.2.4 Zahnriemenförderer

Mechanischer Aufbau

- 1 Schutzabdeckung
- 2 Riemenumlenkrolle
- 3 Zahnriemen
- 4 Antrieb (hier Mittelantrieb)
- 5 Profilrahmen
- 6 Schutzabdeckung Antrieb

Besondere Merkmale

- Zweispurig
- Antrieb ist formschlüssig und schlupffrei
- Transport von sperrigen Teilen
- Zahnriemen werden geführt und können nachgespannt werden
- Zahnriemen werden über eine Antriebswelle vom Motor angetrieben und gewähren so einen Synchronlauf

4.3 Fördersystem-Konfigurationen

Die MISUMI-Fördersysteme, sind je nach Planung und Bestellung, unterschiedlich komplett konfiguriert.

- Fördersystem mit Antrieb und Riemen
- Fördersystem ohne Antrieb
- Fördersystem ohne Riemen
- Fördersystem ohne Antrieb und ohne Riemen

Hinweis

Beachten Sie die unterschiedlichen Geltungsbereiche der vorliegenden Betriebsanleitung der Fördersystem-Konfigurationen, sowie die speziellen Sicherheitshinweise für Fördersysteme ohne Förderriemen und/oder Antrieb!

Zubehör

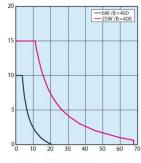
Für die nachfolgend beschriebenen Fördersysteme sind verschiedene Zubehörteile erhältlich. Weiterführende Informationen finden Sie in Kapitel "Zubehör" ab Seite 60.

Seite	Bezeichnung	Тур
12	SVKAE	Flachriemen-Förderer
12	SVKBE	Flachriemen-Förderer
13	SVKNE	Flachriemen-Förderer
13	SVKRE	Flachriemen-Förderer
14	GVHAE	Flachriemen-Förderer
14	GVFAE	Flachriemen-Förderer
15	GVHNE	Flachriemen-Förderer
15	GVFNE	Flachriemen-Förderer
16	GVTSAE	
16	GVTSNE	Synchronriemen-Förderer
17	GVTWAUE	Synchronriemen-Förderer
17	GVTWAGE	Synchronriemen-Förderer
		Synchronriemen-Förderer
18	GVTWNUE	Synchronriemen-Förderer
18	GVTWNSE	Synchronriemen-Förderer
19 19	CVGAE	Flachriemen-Förderer Flachriemen-Förderer
20	CVGNE	Flachriemen-Förderer
20	CVGRE	Flachriemen-Förderer Flachriemen-Förderer
21	CVGBE	
21	CVGDE	Flachriemen-Förderer
22	CVGPE	Flachriemen-Förderer
22	CVCEE	Flachriemen-Förderer Flachriemen-Förderer
	CVSEE	
23	CVSFE	Flachriemen-Förderer
24	CVSXE	Flachriemen-Förderer Flachriemen-Förderer
24		
25 25	CVSFAE CVSFBE	Vollriemen-Förderer Vollriemen-Förderer
	CVSFCE	Vollriemen-Förderer
26 26	CVSFDE	Vollriemen-Förderer
		Flachriemen-Förderer
27 27	CVSJAE CVSMAE	Flachriemen-Förderer
28	CVSWAE	Flachriemen-Förderer
28	CVLFAE	Flachriemen-Förderer
29	CVMBE	Flachriemen-Förderer
29	CVMBE	Synchronriemen-Förderer
30	CVSTRE	Synchronriemen-Förderer
30	CVGTAE	Synchronriemen-Förderer
31	CVGTRE	Synchronriemen-Förderer
31	CVGTBE	Synchronriemen-Förderer
32	CVGTPE	Synchronriemen-Förderer
32	CVSPAE	Kunststoffketten-Förderer
33	CVSSAE	Edelstahlriemen-Förderer
33	CVSSAE	Flachriemen-Förderer mit Stollen
34	CVDSBE	Flachriemen-Förderer mit Stollen
34	CVSPCE	Kunststoffketten-Förderer

4.3.1 **SVKAE**

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Kopfantrieb


Technische Daten

Riemenbreite (mm)*	50~400	
Länge (mm)*	300~3000	
Gewicht (kg)*	3.7~28.8	
Leistung (W)*	6	25
Spannung (V)	230	
Frequenz (Hz)	50	

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz	60 Hz	
5	56.4	67.7	
7.5	37.6	45.1	
9	31.3	37.6	
12.5	22.6	27.1	
15	18.8	22.6	
18	15.7	18.8	
25	11.3	13.5	
30	9.4	11.3	
36	7.8	9.4	
50	5.6	6.8	
60	4.7	5.6	
75	3.8	4.5	
90	3.1	3.8	
100	2.8	3.4	
120	2.4	2.8	
150	1.9	2.3	
180	1.6	1.9	

Weiterführende Informationen

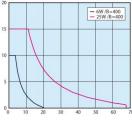
Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.2 SVKBE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Kopfantrieb
- Riemen mit Führungskeil als Mäandrierschutz


Technische Daten

Riemenbreite (mm)*	50~400		
Länge (mm)*	300~3000		
Gewicht (kg)*	3.7~28.8		
Leistung (W)*	6	25	
Spannung (V)	230		
Frequenz (Hz)	50		

* Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

				[6W /B:	=400 3=400
					8	
1	1					
	\					
1						
1		0 3	0 4	10	50	60

	Bandgeschwindigkeit			
	50 Hz	60 Hz		
5	56.4	67.7		
7.5	37.6	45.1		
9	31.3	37.6		
12.5	22.6	27.1		
15	18.8	22.6		
18	15.7	18.8		
25	11.3	13.5		
30	9.4	11.3		
36	7.8	9.4		
50	5.6	6.8		
60	4.7	5.6		
75	3.8	4.5		
90	3.1	3.8		
100	2.8	3.4		
120	2.4	2.8		
150	1.9	2.3		
180	1.6	1.9		

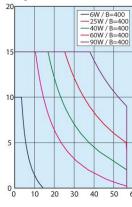
Weiterführende Informationen

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.3 **SVKNE**

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Mittelantrieb


Technische Daten

Riemenbreite (mm)*	50~400				
Länge (mm)*	390~3000				
Gewicht (kg)*	5.4~41.5				
Leistung (W)*	6 25 40 60 9				90
Spannung (V)	230				
Frequenz (Hz)	50				

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgesch	windigkeit
	50 Hz	60 Hz
5	47.1	56.5
7.5	31.4	37.7
9	26.2	31.4
12.5	18.8	22.6
15	15.7	18.8
18	13.1	15.7
25	9.4	11.3
30	7.9	9.4
36	6.5	7.9
50	4.7	5.7
60	3.9	4.7
75	3.1	3.8
90	2.6	3.1
100	2.4	2.8
120	2.0	2.4
150	1.6	1.9
180	1.3	1.6

Weiterführende Informationen

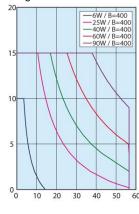
Anschluss Riemenkennwerte Zubehör ab Seite 44ab Seite 35

▶ ab Seite 60

4.3.4 SVKRE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Mittelantrieb
- Riemen mit Führungskeil als Mäandrierschutz


Technische Daten

Riemenbreite (mm)*	50~400				
Länge (mm)*	390~3000				
Gewicht (kg)*	5.4~41.5				
Leistung (W)*	6 25 40 60 90				90
Spannung (V)	230				
Frequenz (Hz)	50				

* Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit			
	50 Hz	60 Hz		
5	47.1	56.5		
7.5	31.4	37.7		
9	26. 2	31.4		
12.5	18.8	22.6		
15	15.7	18.8		
18	13.1	15.7		
25	9.4	11.3		
30	7.9	9.4		
36	6.5	7.9		
50	4.7	5.7		
60	3.9	4.7		
75	3.1	3.8		
90	2.6	3.1		
100	2.4	2.8		
120	2.0	2.4		
150	1.6	1.9		
180	1.3	1.6		

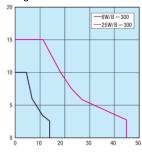
Weiterführende Informationen

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.5 **GVHAE**

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Kopfantrieb

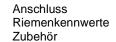

Technische Daten

Riemenbreite (mm) *	30~300		
Länge (mm)*	240~2000		
Gewicht (kg)*	3.9~15.1		
Leistung (W)*	6 25		
Spannung (V)	230		
Frequenz (Hz)	50		

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses



Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebe-kopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit			
	50 Hz	60 Hz		
5	56.4	67.7		
7.5	37.6	45.1		
9	31.3	37.6		
12.5	22.6	27.1		
15	18.8	22.6		
18	15.7	18.8		
25	11.3	13.5		
30	9.4	11.3		
36	7.8	9.4		
50	5.6	6.8		
60	4.7	5.6		
75	3.8	4.5		
90	3.1	3.8		
100	2.8	3.4		
120	2.4	2.8		
150	1.9	2.3		
180	1.6	1.9		

Weiterführende Informationen

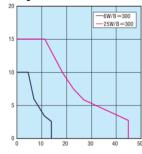
ab Seite 44ab Seite 35

➤ ab Seite 60

4.3.6 **GVFAE**

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Kopfantrieb
- Vollriemen


Technische Daten

Riemenbreite (mm) *	50~300			
Länge (mm)*	240~2000			
Gewicht (kg)*	3.9~15.1			
Leistung (W)*	6 25			
Spannung (V)	230			
Frequenz (Hz)	50			

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebe-kopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit			
	50 Hz	60 Hz		
5	56.4	67.7		
7.5	37.6	45.1		
9	31.3	37.6		
12.5	22.6	27.1		
15	18.8	22.6		
18	15.7	18.8		
25	11.3	13.5		
30	9.4	11.3		
36	7.8	9.4		
50	5.6	6.8		
60	4.7	5.6		
75	3.8	4.5		
90	3.1	3.8		
100	2.8	3.4		
120	2.4	2.8		
150	1.9	2.3		
180	1.6	1.9		

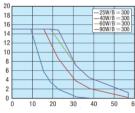
Weiterführende Informationen

Anschluss Riemenkennwerte Zubehör ab Seite 44

4.3.7 **GVHNE**

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Mittelantrieb


Technische Daten

Riemenbreite (mm) *	30~300			
Länge (mm)*	320~2000			
Gewicht (kg)*	7.8~24.1			
Leistung (W)*	25 40 60 90			
Spannung (V)	230			
Frequenz (Hz)	50			

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebe-kopf-Untersetzungsverhältnisses

.

	Bandgeschwindigkeit		
	50 Hz 60 Hz		
5	47.1	56.5	
7.5	31.4	37.7	
9	26.2	31.4	
12.5	18.8	22.6	
15	15.7	18.8	
18	13.1	15.7	
25	9.4	11.3	
30	7.9	9.4	
36	6.5	7.9	
50	4.7	5.7	
60	3.9	4.7	
75	3.1	3.8	
90	2.6	3.1	
100	2.4	2.8	
120	2	2.4	
150	1.6	1.9	
180	1.3	1.6	

Weiterführende Informationen

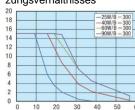
Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.8 **GVFNE**

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Mittelantrieb
- Vollriemen


Technische Daten

Riemenbreite (mm) *	50~300		
Länge (mm)*	320~2000		
Gewicht (kg)*	7.8~24.1		
Leistung (W)*	25 40 60 90		
Spannung (V)	230		
Frequenz (Hz)	50		

* Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebe-kopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz	60 Hz	
5	47.1	56.5	
7.5	31.4	37.7	
9	26.2	31.4	
12.5	18.8	22.6	
15	15.7	18.8	
18	13.1	15.7	
25	9.4	11.3	
30	7.9	9.4	
36	6.5	7.9	
50	4.7	5.7	
60	3.9	4.7	
75	3.1	3.8	
90	2.6	3.1	
100	2.4	2.8	
120	2	2.4	
150	1.6	1.9	
180	1.3	1.6	

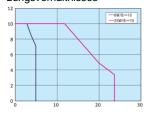
Weiterführende Informationen

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.9 GVTSAE

Besondere Merkmale

- Synchronriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Kopfantrieb


rechnische Daten				
Diamanharita (man) *	40			
Riemenbreite (mm) *	10			
Länge (mm)*	190~2000)		
Gewicht (kg)*	2.2~5.2			
Leistung (W)*	6	25		
Spannung (V)	230			

50

Förderleistung

Frequenz (Hz)

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebe-kopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz	60 Hz	
5	30.0	36.0	
7.5	20.0	24.0	
9	16.7	20.0	
12.5	12.0	14.4	
15	10.0	12.0	
18	8.3	10.0	
25	6.0	7.2	
30	5.0	6.0	
36	4.2	5.0	
50	3.0	3.6	
60	2.5	3.0	
75	2.0	2.4	
90	1.7	2.0	
100	1.5	1.8	
120	1.2	1.5	
150	1.0	1.2	
180	0.8	1.0	

Weiterführende Informationen

Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.10 GVTSNE

Besondere Merkmale

- Synchronriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Mittelantrieb

Technische Daten

Riemenbreite (mm) *	10		
Länge (mm)*	200~2000		
Gewicht (kg)*	2.3~5.3		
Leistung (W)*	6 25		
Spannung (V)	230		
Frequenz (Hz)	50		

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebe-kopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz	60 Hz	
5	30.0	36.0	
7.5	20.0	24.0	
9	16.7	20.0	
12.5	12.0	14.4	
15	10.0	12.0	
18	8.3	10.0	
25	6.0	7.2	
30	5.0	6.0	
36	4.2	5.0	
50	3.0	3.6	
60	2.5	3.0	
75	2.0	2.4	
90	1.7	2.0	
100	1.5	1.8	
120	1.2	1.5	
150	1.0	1.2	
180	0.8	1.0	

(Ii

Weiterführende Informationen

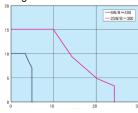
- ▶ ab Seite 44
- ab Seite 35ab Seite 60

^{*} Angaben sind abhängig von der Ausführung des Förderers

4.3.11 GVTWAUE

Besondere Merkmale

- Synchronriemen-Förderer, 2-bahnig
- Riemenscheibe Ø 30 mm
- Kopfantrieb (INNERHALB des Motors)


Technische Daten

Riemenbreite (mm) *	50~300		
Länge (mm)*	250~2000		
Gewicht (kg)*	3.4~8.3		
Leistung (W)*	6	25	
Spannung (V)	230		
Frequenz (Hz)	50		

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebe-kopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz	60 Hz	
5	30.0	36.0	
7.5	20.0	24.0	
9	16.7	20.0	
12.5	12.0	14.4	
15	10.0	12.0	
18	8.3	10.0	
25	6.0	7.2	
30	5.0	6.0	
36	4.2	5.0	
50	3.0	3.6	
60	2.5	3.0	
75	2.0	2.4	
90	1.7	2.0	
100	1.5	1.8	
120	1.2	1.5	
150	1.0	1.2	
180	0.8	1.0	

Weiterführende Informationen

Anschluss Riemenkennwerte Zubehör ➤ ab Seite 44

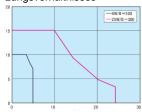
▶ ab Seite 35

► ab Seite 60

4.3.12 GVTWASE

Besondere Merkmale

- Synchronriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Kopfantrieb (AUSSERHALB des Motors)


Technische Daten

Riemenbreite (mm) *	50~2300		
Länge (mm)*	250~2000		
Gewicht (kg)*	3.4~8.3		
Leistung (W)*	6 25		
Spannung (V)	230		
Frequenz (Hz)	50		

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebe-kopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz 60 Hz		
5	30.0	36.0	
7.5	20.0	24.0	
9	16.7	20.0	
12.5	12.0	14.4	
15	10.0	12.0	
18	8.3	10.0	
25	6.0	7.2	
30	5.0	6.0	
36	4.2	5.0	
50	3.0	3.6	
60	2.5	3.0	
75	2.0	2.4	
90	1.7	2.0	
100	1.5	1.8	
120	1.2	1.5	
150	1.0	1.2	
180	0.8	1.0	

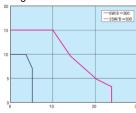
Weiterführende Informationen

- ▶ ab Seite 44
- ▶ ab Seite 35▶ ab Seite 60

4.3.13 GVTWNUE

Besondere Merkmale

- Synchronriemen-Förderer, 2-bahnig
- Riemenscheibe Ø 30 mm
- Mittelantrieb (INNERHALB des Motors)


Technische Daten

Riemenbreite (mm) *	50~300		
Länge (mm)*	280~2000		
Gewicht (kg)*	3.5~8.5		
Leistung (W)*	6 25		
Spannung (V)	230		
Frequenz (Hz)	50		

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebe-kopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit	
	50 Hz	60 Hz
5	30.0	36.0
7.5	20.0	24.0
9	16.7	20.0
12.5	12.0	14.4
15	10.0	12.0
18	8.3	10.0
25	6.0	7.2
30	5.0	6.0
36	4.2	5.0
50	3.0	3.6
60	2.5	3.0
75	2.0	2.4
90	1.7	2.0
100	1.5	1.8
120	1.2	1.5
150	1.0	1.2
180	0.8	1.0

Weiterführende Informationen

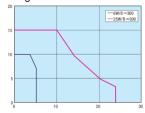
Anschluss Riemenkennwerte Zubehör

- ➤ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.14 GVTWNSE

Besondere Merkmale

- Synchronriemen-Förderer, 2-bahnig
- Riemenscheibe Ø 30 mm
- Mittelantrieb (AUSSERHALB des Motors)


Technische Daten

Riemenbreite (mm) *	50~300		
Länge (mm)*	280~2000		
Gewicht (kg)*	3.5~8.5		
Leistung (W)*	6	25	
Spannung (V)	230		
Frequenz (Hz)	50		

* Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebe-kopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit	
	50 Hz	60 Hz
5	30.0	36.0
7.5	20.0	24.0
9	16.7	20.0
12.5	12.0	14.4
15	10.0	12.0
18	8.3	10.0
25	6.0	7.2
30	5.0	6.0
36	4.2	5.0
50	3.0	3.6
60	2.5	3.0
75	2.0	2.4
90	1.7	2.0
100	1.5	1.8
120	1.2	1.5
150	1.0	1.2
180	0.8	1.0

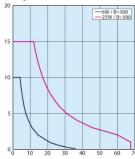
Weiterführende Informationen

- ▶ ab Seite 44
- ab Seite 35
- ▶ ab Seite 60

4.3.15 CVGAE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Kopfantrieb
- Breite Transportoberfläche


Technische Daten

Riemenbreite (mm)*	30~300	
Länge (mm)*	190~2000	
Gewicht (kg)*	4.2~17.4	
Leistung (W)*	6	25
Spannung (V)	230	
Frequenz (Hz)	50	

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit	
	50 Hz	60 Hz
5	56.4	67.7
7.5	37.6	45.1
9	31.3	31.6
12.5	22.6	27.1
15	18.8	22.6
18	15.7	18.8
25	11.3	13.5
30	9.4	11.3
36	7.8	9.4
50	5.6	6.8
60	4.7	5.6
75	3.8	4.5
90	3.1	3.8
100	2.8	3.4
120	2.4	2.8
150	1.9	2.3
180	1.6	1.9

Weiterführende Informationen

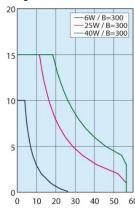
Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.16 CVGCE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 50 mm
- Kopfantrieb
- Breite Transportoberfläche


Technische Daten

Riemenbreite (mm)*	40~300		
Länge (mm)*	240~2000		
Gewicht (kg)*	6.5~25.7		
Leistung (W)*	6	25	40
Spannung (V)	230		
Frequenz (Hz)	50		

* Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

Bandgoschwindigkoit

=300	
3=300 3=300	
	ŀ
	ŀ
	ľ
50 60	
	l

	Bandgeschwindigkeit	
	50 Hz	60 Hz
5	47.1	56.5
7.5	31.4	37.7
9	26.2	31.4
12.5	18.8	22.6
15	15.7	18.8
18	13.1	15.7
25	9.4	11.3
30	7.9	9.4
36	6.5	7.9
50	4.7	5.7
60	3.9	4.7
75	3.1	3.8
90	2.6	3.1
100	2.4	2.8
120	2.0	2.4
150	1.6	1.9
180	1.3	1.6
_		

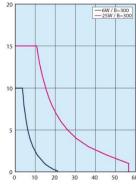
Weiterführende Informationen

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.17 CVGNE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Mittelantrieb
- Riemenspannung einstellbar


Technische Daten

Riemenbreite (mm)*	30~300	
Länge (mm)*	355~2000	
Gewicht (kg)*	5.8~23.9	
Leistung (W)*	6	25
Spannung (V)	230	
Frequenz (Hz)	50	

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit	
	50 Hz	60 Hz
5	47.1	56.5
7.5	31.4	37.7
9	26.2	31.4
12.5	18.8	22.6
15	15.7	18.8
18	13.1	15.7
25	9.4	11.3
30	7.9	9.4
36	6.5	7.9
50	4.7	5.7
60	3.9	4.7
75	3.1	3.8
90	2.6	3.1
100	2.4	2.8
120	2.0	2.4
150	1.6	1.9
180	1.3	1.6

Weiterführende Informationen

Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.18 CVGRE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 50 mm
- Mittelantrieb
- Riemenspannung einstellbar

Technische Daten

Riemenbreite (mm)*	40~300		
Länge (mm)*	385~2000		
Gewicht (kg)*	7.3~30.6		
Leistung (W)*	6	25	40
Spannung (V)	230		
Frequenz (Hz)	50		

* Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit	
	50 Hz	60 Hz
5	47.1	56.5
7.5	31.4	37.7
9	26.2	31.4
12.5	18.8	22.6
15	15.7	18.8
18	13.1	15.7
25	9.4	11.3
30	7.9	9.4
36	6.5	7.9
50	4.7	5.7
60	3.9	4.7
75	3.1	3.8
90	2.6	3.1
100	2.4	2.8
120	2.0	2.4
150	1.6	1.9
180	1.3	1.6

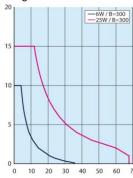
Weiterführende Informationen

- ▶ ab Seite 44
- ➤ ab Seite 35
- ➤ ab Seite 60

4.3.19 CVGBE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Kopfantrieb
- Riemen mit Führungskeil als Mäandrierschutz


Technische Daten

Riemenbreite (mm)*	50~300	
Länge (mm)*	190~2000	
Gewicht (kg)*	4.2~17.4	
Leistung (W)*	6	25
Spannung (V)	230	
Frequenz (Hz)	50	

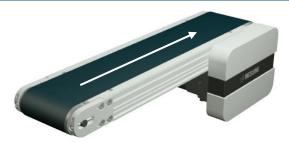
^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses


	Bandgeschwindigkeit		
	50 Hz 60 Hz		
5	56.4	67.7	
7.5	37.6	45.1	
9	31.3	37.6	
12.5	22.6	27.1	
15	18.8	22.6	
18	15.7	18.8	
25	11.3	13.5	
30	9.4	11.3	
36	7.8	9.4	
50	5.6	6.8	
60	4.7	5.6	
75	3.8	4.5	
90	3.1	3.8	
100	2.8	3.4	
120	2.4	2.8	
150	1.9	2.3	
180	1.6	1.9	

Weiterführende Informationen

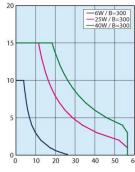
Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.20 CVGDE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 50 mm
- Kopfantrieb
- Riemen mit Führungskeil als Mäandrierschutz


Technische Daten

Riemenbreite (mm)*	50~300		
Länge (mm)*	240~2000		
Gewicht (kg)*	6.5~25.7		
Leistung (W)*	6 25 40		
Spannung (V)	230		
Frequenz (Hz)	50		

* Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz	60 Hz	
5	47.1	56.5	
7.5	31.4	37.7	
9	26.2	31.4	
12.5	18.8	22.6	
15	15.7	18.8	
18	13.1	15.7	
25	9.4	11.3	
30	7.9	9.4	
36	6.5	7.9	
50	4.7	5.7	
60	3.9	4.7	
75	3.1	3.8	
90	2.6	3.1	
100	2.4	2.8	
120	2.0	2.4	
150	1.6	1.9	
180	1.3	1.6	

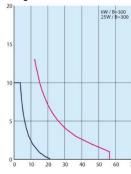
Weiterführende Informationen

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.21 CVGPE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Mittelantrieb
- Riemen mit Führungskeil als Mäandrierschutz


Technische Daten

Riemenbreite (mm)*	50~300	
Länge (mm)*	300~2000	
Gewicht (kg)*	5.8~23.9	
Leistung (W)*	6	25
Spannung (V)	230	
Frequenz (Hz)	50	

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz 60 Hz		
5	47.1	56.5	
7.5	31.4	37.7	
9	26.2	31.4	
12.5	18.8	22.6	
15	15.7	18.8	
18	13.1	15.7	
25	9.4	11.3	
30	7.9	9.4	
36	6.5	7.9	
50	4.7	5.7	
60	3.9	4.7	
75	3.1	3.8	
90	2.6	3.1	
100	2.4	2.8	
120	2.0	2.4	
150	1.6	1.9	
180	1.3	1.6	

Weiterführende Informationen

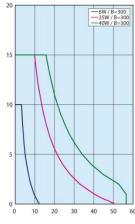
Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.22 CVGWE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 50 mm
- Mittelantrieb
- Riemen mit Führungskeil als Mäandrierschutz


Technische Daten

Riemenbreite (mm)*	50~300		
Länge (mm)*	385~2000		
Gewicht (kg)*	7.3~30.6		
Leistung (W)*	6 25 40		
Spannung (V)	230		
Frequenz (Hz)	50		

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz	60 Hz	
5	47.1	56.5	
7.5	31.4	37.7	
9	26.2	31.4	
12.5	18.8	22.6	
15	15.7	18.8	
18	13.1	15.7	
25	9.4	11.3	
30	7.9	9.4	
36	6.5	7.9	
50	4.7	5.7	
60	3.9	4.7	
75	3.1	3.8	
90	2.6	3.1	
100	2.4	2.8	

2.0

1.6

1.3

Weiterführende Informationen

120

150

180

Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

2.4

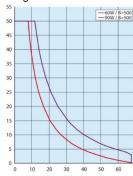
1.9

1.6

4.3.23 CVSEE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig, hohe Leistung
- Riemenscheibe Ø 30, 60 mm
- Kopfantrieb
- Mittlere Förderlänge


-				
I ec	hnisc	he	I)ai	ten

Riemenbreite (mm)*	100~500	
Länge (mm)*	440~6000	
Gewicht (kg)*	15.9~81.5	
Leistung (W)*	60	90
Spannung (V)	230	
Frequenz (Hz)	50	

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz 60 Hz		
5	56.4	67.7	
7.5	37.6	45.1	
9	31.3	37.6	
12.5	22.6	27.1	
15	18.8	22.6	
18	15.7	18.8	
25	11.3	13.5	
30	9.4	11.3	
36	7.8	9.4	
50	5.6	6.8	
60	4.7	5.6	
75	3.8	4.5	
90	3.1	3.8	
100	2.8	3.4	
120	2.4	2.8	
150	1.9	2.3	
180	1.6	1.9	

Weiterführende Informationen

Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.24 CVSFE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig, hohe Leistung
- Riemenscheibe Ø 30, 60 mm
- Kopfantrieb
- Riemen mit Führungskeil als Mäandrierschutz

Technische Daten

Riemenbreite (mm)*	100~500	
Länge (mm)*	440~6000	
Gewicht (kg)*	15.9~81.5	
Leistung (W)*	60	90
Spannung (V)	230	
Frequenz (Hz)	50	

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz 60 Hz		
5	56.4	67.7	
7.5	37.6	45.1	
9	31.3	37.6	
12.5	22.6	27.1	
15	18.8	22.6	
18	15.7	18.8	
25	11.3	13.5	
30	9.4	11.3	
36	7.8	9.4	
50	5.6	6.8	
60	4.7	5.6	
75	3.8	4.5	
90	3.1	3.8	
100	2.8	3.4	
120	2.4	2.8	
150	1.9	2.3	

Weiterführende Informationen

180

Anschluss Riemenkennwerte Zubehör

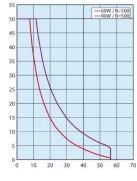
- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

1.9

4.3.25 CVSXE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig, hohe Leistung
- Riemenscheibe Ø 30 mm
- Mittelantrieb
- Mittlere F\u00f6rderentl\u00e4nge


Technische Daten

Riemenbreite (mm)*	100~500		
Länge (mm)*	480~6000		
Gewicht (kg)*	20~94		
Leistung (W)*	60	90	
Spannung (V)	230		
Frequenz (Hz)	50		

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit			
	50 Hz 60 Hz			
5	47.1	56.5		
7.5	31.4	37.7		
9	26.2	31.4		
12.5	18.8	22.6		
15	15.7	18.8		
18	13.1	15.7		
25	9.4	11.3		
30	7.9	9.4		
36	6.5	7.9		
50	4.7	5.7		
60	3.9	4.7		
75	3.1	3.8		
90	2.6	3.1		
100	2.4	2.8		
120	2.0	2.4		
150	1.6	1.9		
180	1.3	1.6		

Weiterführende Informationen

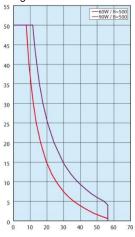
Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44
- ▶ ab Seite 35
- ➤ ab Seite 60

4.3.26 CVSYE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig, hohe Leistung
- Riemenscheibe Ø 30 mm
- Mittelantrieb
- Riemen mit Führungskeil als Mäandrierschutz


Technische Daten

Riemenbreite (mm)*	100~500		
Länge (mm)*	480~6000		
Gewicht (kg)*	20~94		
Leistung (W)*	60	90	
Spannung (V)	230		
Frequenz (Hz)	50		

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz	60 Hz	
5	47.1	56.5	
7.5	31.4	37.7	
9	26.2	31.4	
12.5	18.8	22.6	
15	15.7	18.8	
18	13.1	15.7	
25	9.4	11.3	
30	7.9	9.4	
36	6.5	7.9	
50	4.7	5.7	
60	3.9	4.7	
75	3.1	3.8	
90	2.6	3.1	
100	2.4	2.8	
120	2.0	2.4	
150	1.6	1.9	

Weiterführende Informationen

180

Anschluss Riemenkennwerte Zubehör

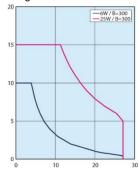
- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

1.6

4.3.27 CVSFAE

Besondere Merkmale

- Vollriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Kopfantrieb
- Gesamte Oberfläche für Transport verwendbar


Technische Daten

Riemenbreite (mm)*	60~300		
Länge (mm)*	280~2000		
Gewicht (kg)*	4.3~16.3		
Leistung (W)*	6	25	
Spannung (V)	230		
Frequenz (Hz)	50		

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit			
	50 Hz 60 Hz			
12.5	22.6	27.1		
15	18.8	22.6		
18	15.7	18.8		
25	11.3	13.5		
30	9.4	11.3		
36	7.8	9.4		
50	5.6	6.8		
60	4.7	5.6		
75	3.8	4.5		
90	3.1	3.8		
100	2.8	3.4		
120	2.4	2.8		
150	1.9	2.3		
180	1.6	1.9		


H

Weiterführende Informationen

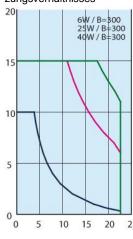
Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44▶ ab Seite 35
- ▶ ab Seite 60

4.3.28 CVSFBE

Besondere Merkmale

- Vollriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 50 mm
- Kopfantrieb
- Gesamte Oberfläche für Transport verwendbar


Technische Daten

Riemenbreite (mm)*	60~300		
Länge (mm)*	320~2000		
Gewicht (kg)*	6~23.9		
Leistung (W)*	6 25 40		40
Spannung (V)	230		
Frequenz (Hz)	50		

* Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz	60 Hz	
12.5	18.8	22.6	
15	15.7	18.8	
18	13.1	15.7	
25	9.4	11.3	
30	7.9	9.4	
36	6.5	7.9	
50	4.7	5.7	
60	3.9	4.7	
75	3.1	3.8	
90	2.6	3.1	
100	2.4	2.8	
120	2.0	2.4	
150	1.6	1.9	
180	1.3	1.6	

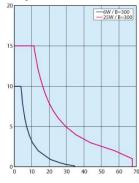
Weiterführende Informationen

- ➤ ab Seite 44
- ➤ ab Seite 35
- ▶ ab Seite 60

4.3.29 CVSFCE

Besondere Merkmale

- Vollriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Kopfantrieb
- Riemen mit Führungskeil als Mäandrierschutz
- Gesamte Oberfläche für Transport verwendbar


Technische Daten

Riemenbreite (mm)*	70~300		
Länge (mm)*	280~2000		
Gewicht (kg)*	4.3~16.3		
Leistung (W)*	6	25	
Spannung (V)	230		
Frequenz (Hz)	50		

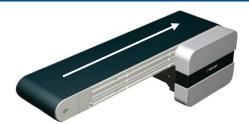
^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses


	Bandgeschwindigkeit		
	50 Hz	60 Hz	
5	56.4	67.7	
7.5	37.6	45.1	
9	31.3	37.6	
12.5	22.6	27.1	
15	18.8	22.6	
18	15.7	18.8	
25	11.3	13.5	
30	9.4	11.3	
36	7.8	9.4	
50	5.6	6.8	
60	4.7	5.6	
75	3.8	4.5	
90	3.1	3.8	
100	2.8	3.4	
120	2.4	2.8	
150	1.9	2.3	
180	1.6	1.9	

Weiterführende Informationen

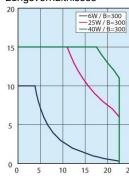
Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.30 CVSFDE

Besondere Merkmale

- Vollriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 50 mm
- Kopfantrieb
- Riemen mit Führungskeil als Mäandrierschutz
- Gesamte Oberfläche für Transport verwendbar


Technische Daten

Riemenbreite (mm)*	80~300		
Länge (mm)*	320~2000		
Gewicht (kg)*	6~23.9		
Leistung (W)*	6 25 40		40
Spannung (V)	230		
Frequenz (Hz)	50		

* Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

2.8

2.4

1.9

1.6

	Bandgeschwindigkeit	
	50 Hz	60 Hz
5	47.1	56.5
7.5	31.4	37.7
9	26.2	31.4
12.5	18.8	22.6
15	15.7	18.8
18	13.1	15.7
25	9.4	11.3
30	7.9	9.4
36	6.5	7.9
50	4.7	5.7
60	3.9	4.7
75	3.1	3.8
90	2.6	3.1

2.4

2.0

1.6

1.3

Weiterführende Informationen

100

120

150

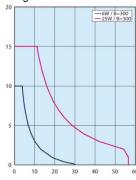
180

- ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.31 CVSJAE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig, kurze Ausführung
- Riemenscheibe Ø 30 mm
- Mittelantrieb
- Riemen mit Führungskeil als Mäandrierschutz


Technische Daten

Riemenbreite (mm)*	50~300	
Länge (mm)*	220~600	
Gewicht (kg)*	6.7~14.3	
Leistung (W)*	6	25
Spannung (V)	230	
Frequenz (Hz)	50	

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz	60 Hz	
5	47.1	56.5	
7.5	31.4	37.7	
9	26.2	31.4	
12.5	18.8	22.6	
15	15.7	18.8	
18	13.1	15.7	
25	9.4	11.3	
30	7.9	9.4	
36	6.5	7.9	
50	4.7	5.7	
60	3.9	4.7	
75	3.1	3.8	
90	2.6	3.1	
100	2.4	2.8	
120	2.0	2.4	
150	1.6	1.9	
180	1.3	1.6	

Weiterführende Informationen

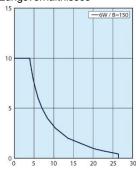
Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.32 CVSMAE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 70 mm
- Integrierter Antrieb
- Reduzierte F\u00f6rdererh\u00f6he


Technische Daten

Riemenbreite (mm)*	60, 100, 150
Länge (mm)*	415~2000
Gewicht (kg)*	6.2~18.7
Leistung (W)*	6
Spannung (V)	230
Frequenz (Hz)	50

* Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz	60 Hz	
15	22.0	26.4	
18	18.3	22.0	
25	13.2	15.8	
30	11.0	13.2	
36	9.2	11.0	
50	6.6	7.9	
60	5.5	6.6	
75	4.4	5.3	
90	3.7	4.4	
100	3.3	4.0	
120	2.7	3.3	
150	2.2	2.6	
180	1.8	2.2	

Weiterführende Informationen

Anschluss Riemenkennwerte Zubehör ▶ ab Seite 44

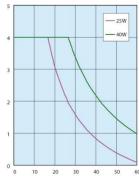
▶ ab Seite 35

▶ ab Seite 60

4.3.33 CVLPAE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 15 mm
- Mittelantrieb
- Niedrige Ausführung


Technische Daten

Riemenbreite (mm)*	60~200	
Länge (mm)*	390~2000	
Gewicht (kg)*	7.6~21.1	
Leistung (W)*	25	40
Spannung (V)	230	
Frequenz (Hz)	50	

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit	
	50 Hz	60 Hz
5	47.1	56.5
7.5	31.4	37.7
9	26.2	31.4
12.5	18.8	22.6
15	15.7	18.8
18	13.1	15.7
25	9.4	11.3
30	7.9	9.4
36	6.5	7.9
50	4.7	5.7
60	3.9	4.7
75	3.1	3.8
90	2.6	3.1
100	2.4	2.8
120	2.0	2.4
_		

1.6

Weiterführende Informationen

150

180

Anschluss Riemenkennwerte Zubehör

▶ ab Seite 44

1.9

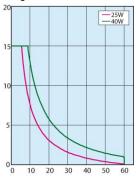
1.6

- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.34 CVMAE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Kopfantrieb
- Motorposition wählbar


Technische Daten

Riemenbreite (mm)*	50~300	
Länge (mm)*	200~2000	
Gewicht (kg)*	10.5~20	
Leistung (W)*	25	40
Spannung (V)	230	
Frequenz (Hz)	50	

* Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

Bandgoschwindigkoit

			25W -40W	
1				

	Bandgeschwindigkeit	
	50 Hz	60 Hz
5	56.4	67.7
7.5	37.6	45.1
9	31.3	37.6
12.5	22.6	27.1
15	18.8	22.6
18	15.7	18.8
25	11.3	13.5
30	9.4	11.3
36	7.8	9.4
50	5.6	6.8
60	4.7	5.6
75	3.8	4.5
90	3.1	3.8
100	2.8	3.4
120	2.4	2.8
150	1.9	2.3
180	1.6	1.9
		<u> </u>

Weiterführende Informationen

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.35 CVMBE

Besondere Merkmale

- Flachriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 30 mm
- Kopfantrieb
- Riemen mit Führungskeil als Mäandrierschutz

Technische Daten

Riemenbreite (mm)*	50~300	
Länge (mm)*	200~2000	
Gewicht (kg)*	10.5~20	
Leistung (W)*	25	40
Spannung (V)	230	
Frequenz (Hz)	50	

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz	60 Hz	
5	56.4	67.7	
7.5	37.6	45.1	
9	31.3	37.6	
12.5	22.6	27.1	
15	18.8	22.6	
18	15.7	18.8	
25	11.3	13.5	
30	9.4	11.3	
36	7.8	9.4	
50	5.6	6.8	
60	4.7	5.6	
75	3.8	4.5	
90	3.1	3.8	
100	2.8	3.4	
120	2.4	2.8	
150	1.9	2.3	
180	1.6	1.9	

Weiterführende Informationen

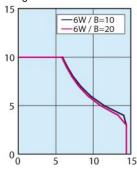
Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.36 CVSTCE

Besondere Merkmale

- Synchronriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 19, 20 mm
- Kopfantrieb
- Platzsparende Ausführung


Technische Daten

Riemenbreite (mm)*	10, 20
Länge (mm)*	245~2000
Gewicht (kg)*	3~7.7
Leistung (W)*	6
Spannung (V)	230
Frequenz (Hz)	50

* Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit			
	50 Hz 60 Hz			
12.5	12.0	14.4		
15	10.0	12.0		
18	8.3	10.0		
25	6.0	7.2		
30	5.0	6.0		
36	4.2	5.0		
50	3.0	3.6		
60	2.5	3.0		
75	2.0	2.4		
90	1.7	2.0		
100	1.5	1.8		
120	1.3	1.5		
150	1.0	1.2		
180	0.8	1.0		

Weiterführende Informationen

- ➤ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.37 CVSTRE

Besondere Merkmale

- Synchronriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 19, 20 mm
- Mittelantrieb
- Platzsparende Ausführung

Technische Daten

Riemenbreite (mm)*	10, 20
Länge (mm)*	330~2000
Gewicht (kg)*	3.9~8.6
Leistung (W)*	6
Spannung (V)	230
Frequenz (Hz)	50

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

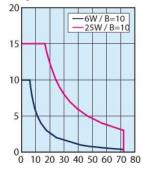
Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit	
	50 Hz	60 Hz
12.5	12.0	14.4
15	10.0	12.0
18	8.3	10.0
25	6.0	7.2
30	5.0	6.0
36	4.2	5.0
50	3.0	3.6
60	2.5	3.0
75	2.0	2.4
90	1.7	2.0
100	1.5	1.8
120	1.3	1.5
150	1.0	1.2
180	0.8	1.0

4.3.38 CVGTAE

Besondere Merkmale

- Synchronriemen-Förderer, 2-bahnig
- Riemenscheibe Ø 30 mm
- Kopfantrieb
- Stopper, Sensoren im Zwischenraum installierbar


Technische Daten

Riemenbreite (mm)*	80~300	
Länge (mm)*	255~3000	
Gewicht (kg)*	5.2~10.6	
Leistung (W)*	6	25
Spannung (V)	230	
Frequenz (Hz)	50	

* Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz	60 Hz	
5	60.0	72.0	
7.5	40.0	48.0	
9	33.3	40.0	
12.5	24.0	28.8	
15	20.0	24.0	
18	16.7	20.0	
25	12.0	14.4	
30	10.0	12.0	
36	8.3	10.0	
50	6.0	7.2	
60	5.0	6.0	
75	4.0	4.8	
90	3.3	4.0	
100	3.0	3.6	
120	2.5	3.0	
150	2.0	2.4	
180	1.7	2.0	
oformationon			

Weiterführende Informationen

Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

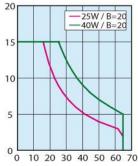
Weiterführende Informationen

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.39 CVGTBE

Besondere Merkmale

- Synchronriemen-Förderer, 2-bahnig
- Riemenscheibe Ø 50 mm
- Kopfantrieb
- Stopper, Sensoren im Zwischenraum installierbar


Technische Daten

Riemenbreite (mm)*	80~300	
Länge (mm)*	265~3000	
Gewicht (kg)*	9.1~24.3	
Leistung (W)*	25	40
Spannung (V)	230	
Frequenz (Hz)	50	

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit	
	50 Hz	60 Hz
5	54.0	64.8
7.5	36.0	43.2
9	30.0	36.0
12.5	21.6	25.9
15	18.0	21.6
18	15.0	18.0
25	10.8	13.0
30	9.0	10.8
36	7.5	9.0
50	5.4	6.5
60	4.5	5.4
75	3.6	4.3
90	3.0	3.6
100	2.7	3.2
120	2.3	2.7
150	1.8	2.2
180	1.5	1.8

Weiterführende Informationen

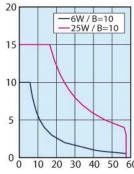
Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.40 CVGTNE

Besondere Merkmale

- Synchronriemen-Förderer, 2-bahnig
- Riemenscheibe Ø 30 mm
- Mittelantrieb
- Stopper, Sensoren im Zwischenraum installierbar


Technische Daten

Riemenbreite (mm)*	80~300	
Länge (mm)*	265~3000	
Gewicht (kg)*	6.6~13.4	
Leistung (W)*	6	25
Spannung (V)	230	
Frequenz (Hz)	50	

* Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

		C
	io	:1
5		Ì
7		
9		
1		
1		
1		
2	0 60	5
3	.0 00	_
_		

	Bandgeschwindigkeit	
	50 Hz	60 Hz
5	48.0	57.6
7.5	32.0	38.4
9	26.7	32.0
12.5	19.2	23.0
15	16.0	19.2
18	13.3	16.0
25	9.6	11.5
30	8.0	9.6
36	6.7	8.0
50	4.8	5.8
60	4.0	4.8
75	3.2	3.8
90	2.7	3.2
100	2.4	2.9
120	2.0	2.4
150	1.6	1.9
180	1.3	1.6
120 150	2.0	2.4

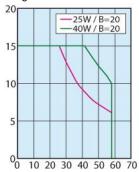
Weiterführende Informationen

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.41 CVGTPE

Besondere Merkmale

- Synchronriemen-Förderer, 2-bahnig
- Riemenscheibe Ø 50 mm
- Mittelantrieb
- Stopper, Sensoren im Zwischenraum installierbar


Technische Daten

Riemenbreite (mm)*	80~300	
Länge (mm)*	325~3000	
Gewicht (kg)*	9.8~26.4	
Leistung (W)*	25	40
Spannung (V)	230	
Frequenz (Hz)	50	

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz	60 Hz	
5	48.0	57.6	
7.5	32.0	38.4	
9	26.7	32.0	
12.5	19.2	23.0	
15	16.0	19.2	
18	13.3	16.0	
25	9.6	11.5	
30	8.0	9.6	
36	6.7	8.0	
50	4.8	5.8	
60	4.0	4.8	
75	3.2	3.8	
90	2.7	3.2	
100	2.4	2.9	
120	2.0	2.4	
150	1.6	1.9	
180	1.3	1.6	

Weiterführende Informationen

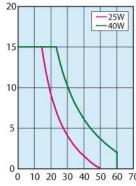
Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.42 CVSPAE

Besondere Merkmale

- Kunststoffketten-Förderer, 2-bahnig
- Kettenrad Ø 57 mm
- Kopfantrieb
- Stopper, Sensoren im Zwischenraum installierbar


Technische Daten

Riemenbreite (mm)*	80~300	
Länge (mm)*	300~3000	
Gewicht (kg)*	9.6~27.7	
Leistung (W)*	25	40
Spannung (V)	230	
Frequenz (Hz)	50	

* Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	i		
1		Bandgeschwindigkeit	
		50 Hz	60 Hz
	5	53.7	64.4
	7.5	35.8	43.0
	9	29.8	35.8
	12.5	21.5	25.8
	15	17.9	21.5
	18	14.9	17.9
	25	10.7	12.9
70	30	9.0	10.7
	36	7.5	9.0

	Banageschwindigkeit		
	50 Hz	60 Hz	
5	53.7	64.4	
7.5	35.8	43.0	
9	29.8	35.8	
12.5	21.5	25.8	
15	17.9	21.5	
18	14.9	17.9	
25	10.7	12.9	
30	9.0	10.7	
36	7.5	9.0	
50	5.4	6.4	
60	4.5	5.4	
75	3.6	4.3	
90	3.0	3.6	
100	2.7	3.2	
120	2.2	2.7	
150	1.8	2.1	
180	1.5	1.8	

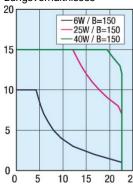
Weiterführende Informationen

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60

4.3.43 CVSSAE

Besondere Merkmale

- Edelstahlriemen-Förderer, 1-bahnig
- Riemenscheibe Ø 50 mm
- Kopfantrieb
- Hitzebeständigkeit und Leitfähigkeit

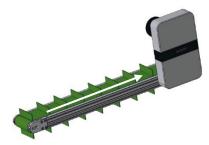

Technische Daten

Riemenbreite (mm)*	40~150		
Länge (mm)*	250~2000		
Gewicht (kg)*	6.7~20.4		
Leistung (W)*	6	25	40
Spannung (V)	230		
Frequenz (Hz)	50		

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses



Getriebekopf-Untersetzungsverhältnis

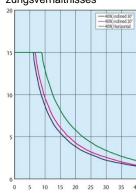
Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit		
	50 Hz	60 Hz	
12.5	18.8	22.6	
15	15.7	18.8	
18	13.1	15.7	
25	9.4	11.3	
30	7.9	9.4	
36	6.5	7.9	
50	4.7	5.7	
60	3.9	4.7	
75	3.1	3.8	
90	2.6	3.1	
100	2.4	2.8	
120	2.0	2.4	
150	1.6	1.9	
180	1.3	1.6	

4.3.44 CVDSAE

Besondere Merkmale

- Flachriemen-Förderer mit Stollen, 1-bahnig
- Riemenscheibe Ø 50 mm
- Kopfantrieb
- Geeignet für Nahrungsmittel, Ausführung mit Neigung


Technische Daten

Riemenbreite (mm)*	50~300
Länge (mm)*	500~3000
Gewicht (kg)*	11.4~37.8
Leistung (W)*	40
Spannung (V)	230
Frequenz (Hz)	50

* Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

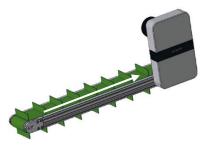
Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit	
	50 Hz	60 Hz
7.5	31.4	37.7
9	26.2	31.4
12.5	18.8	22.6
15	15.7	18.8
18	13.1	15.7
25	9.4	11.3
30	7.9	9.4
36	6.5	7.9
50	4.7	5.7
60	3.9	4.7
75	3.1	3.8
90	2.6	3.1
100	2.4	2.8
120	2.0	2.4
150	1.6	1.9
180	1.3	1.6

Weiterführende Informationen

Anschluss Riemenkennwerte Zubehör

- ▶ ab Seite 44
- ▶ ab Seite 35
- ▶ ab Seite 60


Weiterführende Informationen

Anschluss Riemenkennwerte Zubehör

- ab Seite 44
 - ▶ ab Seite 35
 - ▶ ab Seite 60

4.3.45 CVDSBE

Besondere Merkmale

- Flachriemen-Förderer mit Stollen, 1-bahnig
- Riemenscheibe Ø 50 mm
- Kopfantrieb
- Geeignet für Nahrungsmittel, Ausführung Neigung, ölresistent

Technische Daten

Riemenbreite (mm)*	50~300
Länge (mm)*	500~3000
Gewicht (kg)*	11.4~37.8
Leistung (W)*	40
Spannung (V)	230
Frequenz (Hz)	50

^{*} Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

	Bandgeschwindigkeit	
	50 Hz	60 Hz
7.5	31.4	37.7
9	26.2	31.4
12.5	18.8	22.6
15	15.7	18.8
18	13.1	15.7
25	9.4	11.3
30	7.9	9.4
36	6.5	7.9
50	4.7	5.7
60	3.9	4.7
75	3.1	3.8
90	2.6	3.1
100	2.4	2.8
120	2.0	2.4
150	1.6 1.9	
180	1.3	1.6

Weiterführende Informationen

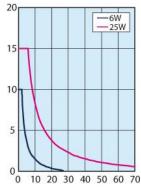
Anschluss Riemenkennwerte Zubehör

- ab Seite 44
- ab Seite 35
- ▶ ab Seite 60

4.3.46 CVSPCE

Besondere Merkmale

- Kunststoffketten-Förderer, 1-bahnig
- Kettenrad Ø 57 mm
- Kopfantrieb
- Verhindert Kratzer, einfache Wartung


Technische Daten

Riemenbreite (mm)*	20	
Länge (mm)*	350~3000	
Gewicht (kg)*	5.3~12.9	
Leistung (W)*	6	25
Spannung (V)	230	
Frequenz (Hz)	50	

* Angaben sind abhängig von der Ausführung des Förderers

Förderleistung

Zulässige Transfermasse (vertikal in kg) in Abhängigkeit von Bandgeschwindigkeit (horizontal in m/min) und des gewählten Übersetzungsverhältnisses

Getriebekopf-Untersetzungsverhältnis

Bandgeschwindigkeit (m/min) in Abhängigkeit der Frequenz und des gewählten Getriebekopf-Untersetzungsverhältnisses

4.3

3.6

3.2

2.7

2.1

1.8

	Bandgeschwindigkeit	
	50 Hz	60 Hz
5	53.7	64.4
7.5	35.8	43.0
9	29.8	35.8
12.5	21.5	25.8
15	17.9	21.5
18	14.9	17.9
25	10.7	12.9
30	9.0	10.7
36	7.5	9.0
50	5.4	6.4
60	4.5	5.4

3.6

3.0

2.7

2.2

1.8

1.5

Weiterführende Informationen

75

90

100

120

150

180

Anschluss Riemenkennwerte Zubehör

- ab Seite 44
- ab Seite 35
- ▶ ab Seite 60

4.4 Riemen

Die Fördersysteme sind je nach Konfiguration, Einsatzbedingungen und Fördergut mit unterschiedlichen Riemen ausgeführt. Die Breite und Länge sind frei wählbar. Je Anwendungsfall sind nachfolgende Riemen verfügbar.

Riemen	Anwendung	Darstellung
Flachriemen Flachriemen mit Führungs- keil	 universell einsetzbar gleitend Förderer für elektronische Bauteile ölbeständig dünnflüssig ruckfreier Betrieb 	
Edelstahlrie- men	universell einsetzbargleitend	1
Synchronrie- men	 Transport von Werk- stückträgern 	MINISTER STATES
Kunststoff- kette	 Transport von Werk- stückträgern 	San
Flachriemen mit Stollen	 Transport von Nah- rungsmitteln 	

Riemen bestellen - weitere Informationen

Detaillierte Informationen zu technischen Spezifikationen und Einsatzgebieten der Riemen, sowie Bestellmöglichkeiten sind dem Katalog oder auf

der Website www.misumi-europe.com zu entnehmen.

VORSICHT

Beschädigung des Förderriemens

Es bestehen Gefahren für die Lebensdauer und die Förderqualität des Förderriemens bei falscher oder unsachgemäßer Verwendung.

Riemen mit einer Dicke von 0,1 und 0,15 mm sind für Förderanlagen nicht geeignet!

Stoßeinwirkungen in Dickenrichtung vermeiden, da der Riemen sehr dünn ist! Wenn der Riemen verbeult wird, verkürzt sich seine Lebensdauer.

Werkstücke ohne Riemenberührung durch Rutschen oder andere mechanische Handlingsgeräte laden! Sicherstellen, dass das Transportgut, das mit dem Riemen in Kontakt kommt, eine geringere Oberflächenhärte als der Riemen hat.

Keine Riemen verwenden, bei denen Staub zwischen Riemengrundplatte oder Führung eindringen kann!

Vorgesehene Riemenscheibe und Führungsrolle verwenden!

4.4.1 Technische Daten – Riemen

Riemenkennwerte – Synchronriemen

MISUMI- Teile- nummer	Werkstoff	zulässige Zug- spannung (N)	Dauereinsatz Temperatur °C	Gewicht g/m (Breite 10 mm)
LTBR	Polyurethan	120	-20~70	32.5
LTBRA	Polyurethan	150	0~80	20.8
LTBJA	Polyurethan	150	0~80	20.8

Riemenkennwerte - Kunststoffkette

MISUMI- Teile- nummer	Werkstoff	Zulässige Zugspannung (N)	Dauereinsatz Temperatur °C	Bezugs- masse (kg/m)
CHEED	Polyacetal	45	-5~65	0.32

zulässige Kettengeschwindigkeit (m/min)	Gleitreibungskoeffizient f1
60	0.32

Riemenkennwerte – Flachriemen

MISUMI- Teile-num- mer	Anwendung	Werkstoff Vorderseite	Werkstoff Rückseite		Dicke mm	Gewicht kg/m²	nung	min. Riemen- schei- ben- durch-	Schneid- kante	Tempe-	Reibungs zie (bei pol Stal	nt iertem hl)
							N/m	messer Ø mm		ratur °C	Vorder- seite	Rück- seite
HBLT				grün	0.8	0.9	4	25	R8	-10~80	0.3	0.1
HBLTWH				weiß	0.0	0.5	7	20	NO	10-00	0.5	0.1
HBLTG				grün	8.0	0.7	4	15	R3	-30~80	0.8	0.2
HBLTGDN	Universalbetrieb	Polyurethan		grün	1.7	1.9	8	50	_			
HBLBN				himmel- blau		1.3	3	15	R3	-30~100	0.6	0.2
HBLYGN				gelb- grün		1.5	8	25(15) ^{**1}	(R3) ^{**1}			
SHBLTG	Staubetrieb	PU imprägniert		grün	0.5	0.5	4	25	R3	-10~80	0.15	0.1
SHBLT		Polyester	Polyester	weiß							0.1	0.1
LHBLT	Für den geneig- ten Transport	flexibles	es rethan rethan tändig Po- han	grün	1.5	1.6	4	30	_	-10~80	1.7	0.1
LHBLTWH	ton manoport	Polyurethan		weiß	0.9	1	3.5	25				0.15
GBLW	Technische Da-	Polyurethan		grün weiß	1	0.9	4	15	R3	-30~100	0.7	0.2
GBLGSN	ten für Griff	0.7 0.101.1		grün	1.6	1.6	8	25	_			
OHBLTG		Ölbeständig Po-		grün	0.8	0.7	4	15	R3	00.00	0.8	0.2
OHBLTGN		lyurethan		grün	1.4	1.5	8	25	R3	-30~80	0.8	0.2
OHBLTW	ölbeständig	Daluurathan		weiß	8.0	0.7	4	15	R3	-30~80	0.6	0.2
OHBLGN		Polyurethan		weiß	1.4	1.5	8	25(15) ^{**1}	(R3) ^{**1}		0.6	0.2
NSHBLT				weiß	0.9	1	3.5	25	R5	-10~80	0.2	0.15
NSHBLTS				weiß	8.0	0.7	4	15	R3	-10~80	0.6	0.2
NSHB				himmel- blau	0.8	0.7	4	15	R3	-30~100	0.6	0.2
NSHBLTG				lindgrün	8.0	0.7	4	15	R3	-30~100	0.6	0.2
NSHBWN				weiß	1.4	1.5	8	25(15) ^{**1}	(R3) ^{**1}	-30~100	0.6	0.2
NSHBN	ruckfreier Betrieb	Polyurethan	Polyester	himmel- blau	1.4	1.5	8	25(15) ^{**1}	(R3) ^{**1}	-30~100	0.6	0.2
NSHBLGN				lindgrün	1.4	1.5	8	25(15) ^{**1}	(R3) ^{**1}	-30~100	0.6	0.2
NFHBG				grün	8.0	0.7	4	15	R3	-30~100	0.4	0.2
NFHBW				weiß	8.0	0.7	4	15	R3	-30~100	0.4	0.2
NFHBGN				grün	1.4	1.4	8	30(15) ^{**1}	(R3) ^{※1}	-30~100	0.4	0.2
NFHBWN				weiß	1.4	1.4	8	30(15) ^{**1}	(R3) ^{**1}	-30~100	0.4	0.2
BHFHBWN				weiß	1.4	1.5	8	30(15) ^{**1}	(R3) ^{※1}	-30~100	0.4	0.2

MISUMI Teile-num-			Werkstoff Rückseite	Farho	Dicke mm	Gewicht kg/m²	Zulassige	min. Riemen- schei- ben- durch-	Schneid- kante	Dauer- einsatz Tempe-	Stahl)	
							N/m	messer Ø mm		ratur °C	Vorder- seite	Rück- seite
FHBLT				weiß	8.0	0.9	3.5	20	R3	-10~80	0.2	0.15
KBLW			Polyester	weiß	8.0	0.7	4	15	R3	-30~100	0.6	0.2
KBLT				himmel- blau	0.8	0.7	4	15	R3	-30~100	0.6	0.2
KBLWSN	Nahrungsmittel- transport mög-	Polyurethan		weiß	1.4	1.5	8	25(15) ^{**1}	(R3) ^{**1}	-30~100	0.6	0.2
KBLWDN	lich			weiß	1.7	1.9	8	50	-	-30~100	0.6	0.2
PHBLB				weiß	1.3	1	4	20	-	-30~100	0.6	0.2
PHBLBN				himmel- blau	1.7	1.6	3	30	-	-30~100	0.6	0.2
PHBLWN				weiß	1.7	1.6	3	30	-	-30~100	0.6	0.2
DHBLT	Förderer für	elektrisch leitfä-		schwarz	0.6	0.7	3	25	R3	-10~80	0.2	0.1
DHBLTS	elektronische Bauteile	higes Po- lyurethan	Polyester	schwarz	0.8	0.7	4	15	R3	-10~80	0.8	0.2
DHBLGN		Polyurethan		schwarz	1.4	1.5	8	25(15) ^{**1}	(R3) ^{**1}	-30~80	0.6	0.2

Riemenkennwerte – Flachriemen mit Führungskeil

MISUMI	Ammondus	Werkstoff	Werkstoff	Fauls:	Dicke	Gewicht	Zulässige Span-	Riemen-	Dauerein- satz		koeffizient rtem Stahl)
Teile-num- mer	Anwendung	Vorderseite	Rückseite	Farbe	mm	kg/m²	nung N/mm	schei- ben- durch-	Temperatur °C	Vorder- seite	Rückseite
HBLTDSG HBLTDSW	Universalbetrieb	Polyurethan		grün weiß	0.8	0.7	4	15	-30~80	0.8	0.2
SHBLTDSG SHBLTDSW	Staubetrieb	PU imprägniert Polyester		grün weiß	0.6	0.4	4	20	-30~80	0.2 0.2	0.2 0.2
GBLDSG GBLDSW	Technische Da- ten für Griff	Polyurethan		grün weiß	1.0 1.0	0.9	4	15 15	-30~100 -30~100	0.7 0.7	0.2
OHBLTDSG	ölbeständig	ölbeständiges Polyurethan	Polyester	grün	0.8	0.7	4	15	-30~80	0.8	0.2
OHBLTDSW		Polyurethan		weiß	8.0	0.7	4	15	-30~80	0.8	0.2
NSHBLTDS NSHDSB	ruckfreier	Polyurethan		weiß himmel- blau	0.8	0.7	4	15 15	-30~80 -30~100	0.9	0.2
NSHBLGDS				lindgrün	8.0	0.7	4	15	-30~100	0.6	0.2
HFHBDSG				grün	8.0	0.7	4	15	-30~100	0.4	0.2
HFHBDSW				weiß	8.0	0.7	4	15	-30~100	0.4	0.2
KBLDSW				weiß	0.8	0.7	4	15	-30~100	0.6	0.2
KBLTDSG		Polyurethan		himmel- blau	0.8	0.7	4	15	-30~100	0.6	0.2
PHBLDSB	lich			himmel- blau	1.3	1	4	20	-30~100	0.6	0.2
DHBLTDS	Förderer für elektronische Bauteile	elektrisch leitfähiges Po- lyurethan		schwarz	0.8	0.7	4	15	-30~80	0.8	0.2

Riemenkennwerte – Flachriemen mit Stollen

MISUMI- Teile- nummer	Anwendung	voraer-	Werk- stoff Rück-	Farbe	Dicke mm	Gewicht kg/m²	Gewicht	Gewicht	Gewicht	kg/m² nung	t Span- Rie nung scl	Riemen- einsatz scheibe Tempe-	Riemen- einsatz scheibe Tempe-	Riemen- einsatz scheibe Tempe-	Riemen- einsatz scheibe Tempe-	einsatz Tempe-	einsatz Tempe-	men- einsatz neibe Tempe-	nort möglich	Vorder- Rück-	Rippen- härte Shore A (°)
		seite	seite				kg/cm	Ømm	ratur °C		Vorder- seite	Rück- seite									
YBLTG	Flachriemen	Po-	Dolyootor	grün	1.3	1.5	4.6	50	-15~80	Nein			70								
YBLTW	mit Stollen	lyurethan	Polyester	weiß	1.2	1.3	6	50	-30~80	Ja	-	-	70								

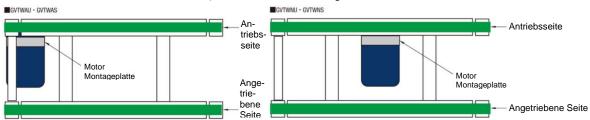
Riemenkennwerte – Edelstahlriemen

MISUMI- Teile-nun mer	I NICKO	Gewicht kg/m²	Zulässige Spannung kg/cm	min. Riemen- scheibe Ø mm	Dauer-ein- satz Temperatur °C	elektrischer Widerstand der Ober-flä- che Ω	Reibungs-koeffi- zient (bei poliertem Stahl)	Härte HV	Young-Elas- tizitätsmo- dul kg/mm²	ausdeh-
	0.1	0.8	4	50	-80~110	0.2	0.2			
STHBLT	0.15	1.2	6	75	-80~120	0.3	0.2	370 oder mehr	19700	17.3
	0.2	1.6	8	100	-80~130	0.5	0.2	5 G S . 1110111		

4.4.2 Austausch von Riemen/Kunststoffketten

Bei einem Austausch eines Riemens oder einer Kunststoffkette sind nachfolgende Kriterien zu berücksichtigen.

Minimal zulässiger Riemenscheiben-Durchmesser	Beachten Sie den festgelegten minimalen Riemenscheiben-Durchmesser für MISUMI-Riemen (Biegeradius).
Riemen- und Kunststoffkettenlängen	Berechnen und vergleichen Sie die Länge des Riemens/der Kunststoffkette anhand der unten aufgeführten Tabelle.
Förderrichtung	Beachten Sie, dass bei manchen Riemen die Förderrichtung festgelegt ist.


4.4.2.1 Formelliste zur Berechnung der Riemenlänge

Teilenummer	Riementyp	Anzahl der Bahnen	Position Antrieb	Riemen- schei- ben-Ø	Formel	Einheit
SVKAE	Flachriemen	Cina Daha	l/amf	30	(2L+97)/1.002/1000	m [*2]
SVKBE	Flachriemen (mit Mäandrierschutz)	Eine Bahn	Kopf	30	(2L+97)/1.002/1000	m [*2]
SVKNE	Flachriemen	Cina Daha	Mittia	30	(2L+270)/1.002/1000 [*6]	m [*2]
SVKRE	Flachriemen (mit Mäandrierschutz)	Eine Bahn	Mittig	30	(2L+270)/1.002/1000 [*6]	m [*2]
GVHAE	Flachriemen	Eine Bahn	Kopf	30	(2L+98)/1000	m [*2]
GVFAE	Flachriemen	Eine Bahn	Kopf	30	(2L+98)/1000	m [*2]
GVHNE	Flachriemen	Eine Bahn	Mittig	30	(2L+250)/1000	m [*2]
GVFNE	Flachriemen	Eine Bahn	Mittig	30	(2L+250)/1000	m [*2]
GVTSAE	Synchronriemen	Eine Bahn	Kopf	30	(2L+220)/5	Zähne
GVTSNE	Synchronriemen	Eine Bahn	Mittig	30	(2L+240)/5	Zähne
GVTWAUE	Synchronriemen (INNERHALB des Motors)	2-bahnig	Kopf	30	Antriebsseite: (2L+220)/5 [*7] Angetriebene Seite: (2L+100)/5 [*7]	Zähne
GVTWASE	Synchronriemen (AUSSERHALB des Motors)	2-bahnig	Kopf	30	Antriebsseite: (2L+220)/5 [*7] Angetriebene Seite: (2L+100)/5 [*7]	Zähne
GVTWNUE	Synchronriemen (INNERHALB des Motors)	2-bahnig	Mittig	30	Antriebsseite: (2L+240)/5 [*7] Angetriebene Seite: (2L+100)/5 [*7]	Zähne
GVTWNSE	Synchronriemen (AUSSERHALB des Motors)	2-bahnig	Mittig	30	Antriebsseite: (2L+240)/5 [*7] Angetriebene Seite: (2L+100)/5 [*7]	Zähne
CVGAE	Florida	Eine Debe	IZt	30	(2L+94)/1000	m [*2]
CVGCE	Flachriemen	Eine Bahn	Kopf	50	(2L+160)/1000	m [*2]
CVGNE	Flachriemen	Eine Bahn	Mittig	30	(2L+A)/1000 [*6]	m [*2]
CVGRE	riacilienien	Line Danii	wiitiig	50	(2L+A)/1000 [*6]	m [*2]
CVGBE	Flachriemen (mit Mäandrierschutz)	Eine Bahn	Kopf	30	(2L+94)/1000	m [*2]
CVGDE	riadimenter (mit waarunerschutz)	Ellic Barin	πορι	50	(2L+160)/1000	m [*2]
CVGPE	Flachriemen (mit Mäandrierschutz)	Eine Bahn	Mittig	30	(2L+A)/1000 [*6]	m [*2]
CVGWE	,		9	50	(2L+A)/1000 [*6]	m [*2]
CVSEE	Flachriemen	Eine Bahn	Kopf	60/30	(2L+161)/1.002/1000	m [*2]
CVSFE	Flachriemen (mit Mäandrierschutz)			60/30	(2L+161)/1.002/1000	m [*2]
CVSXE	Flachriemen	Eine Bahn	Mittig	30	(2L+284)/1.002/1000	m [*2]
CVSYE	Flachriemen (mit Mäandrierschutz)			30	(2L+284)/1.002/1000	m [*2]
CVSSAE	Edelstahlriemen	Eine Bahn	Kopf	50	(2L+160)/1000	m [*2]
CVSFAE	Flachriemen	Eine Bahn	Kopf	30	(2L+97)/1.002/1000	m [*2]
CVSFBE				50	(2L+160)/1.002/1000	m [*2]
CVSFCE	Flachriemen (mit Mäandrierschutz)	Eine Bahn	Kopf	30	(2L+97)/1.002/1000	m [*2]
CVSIAE	Flachriaman (mit Mäandriamah. th	Eino Pohr	Mittia	50	(2L+160)/1.002/1000	m [*2]
CVSJAE	Flachriemen (mit Mäandrierschutz)	Eine Bahn	Mittig	30	(2L+262)/1.002/1000 CVSTC10:(2L+130)/5	m [*2]
CVSTCE	Synchronriemen	Eine Bahn	Kopf	19/20	CVSTC20:(2L+165)/5	Zähne
CVSTRE	Synchronriemen	Eine Bahn	Mittig	19/20	CVSTR10:(2L+215)/5 CVSTR20:(2L+240)/5	Zähne

Teilenummer	Riementyp	Anzahl der Bahnen	Position Antrieb	Riemen- schei- ben-Ø	Formel	Einheit
CVSMAE	Flachriemen	Eine Bahn	Integriert	70	(2L+220)/1.002/1000	m [*2]
CVSTAE	Synchronriemen	2-bahnig	Kopf	30	(2L+100)/5	Zähne [*3]
CVSTBE	Synchronnenen	2-baring	Корі	50	(2L+180)/10	Zähne [*4]
CVSTNE	Synchronriemen	2-bahnig	Mittig	30	(2L+260)/5	Zähne [*3]
CVSTPE	Sylicilionilemen	2-barring	wiitiig	50	(2L+420)/10	Zähne [*5]
CVSPAE	Kunststoffkette	2-bahnig	Kopf	57 [*1]	(2L+179)/12.7	Anschlüsse [*4]
CVDSAE	Flachriemen mit Stollen	Eine Bahn	Kopf	50	(2L+160)/1000	m [*2]
CVDSBE	Flachriemen mit Stollen	Eine Bahn	Kopf	50	(2L+160)/1000	m [*2]
CVLPAE	Flachriemen	Eine Bahn	Mittig	15	(2L+223)/1000	m [*2]
CVSPCE	Kunststoffkette	Eine Bahn	Kopf	57 [*1]	(2L+179)/12.7	Anschlüsse [*4]
CVMAE	Flachriemen	Eine Bahn	Kopf	30	(2L+94)/1000	m [*2]
CVMBE	Flachriemen (mit Mäandrierschutz)	Eine Bahn	Kopf	30	(2L+94)/1000	m [*2]

- [*1] Für Kunststoffketten gilt der Kettenrad-TKD.
- [*2] Auf 2. Dezimalstelle abrunden.
- [*3] Auf ganze Zahl runden.
- [*4] Auf ganze Zahl runden.
- [*5] Auf ganze Zahl aufrunden
- [*6] Für Option Messerkante oder Rollenkante siehe nachfolgende Tabelle für A [(2L+A)/1.002/1000]
- [*7] Wie unten dargestellt, enthalten 2-bahnige Zahnriemenförderer zwei Riemen mit unterschiedlicher Anzahl von Zähnen. Einer für den antreibenden Teil, der andere für den angetriebenen Teil.

		SVKNE	SVKRE	CVGNE	CVGPE	CVGRE	CVGWE
	Standardausführung*	270	270	270	270	330	330
HR	Messerkante beidseitig	257	257	250	250	300	300
MR	Rollenkante einseitig	257	257	250	250	300	300
WR	Rollenkante beidseitig	244	244	240	240	260	260

^{*} ohne Angabe einer Ausführungsvariante

4.5 Komponenten – Elektrik/Steuerung

Hinweis

Das Kapitel "Komponenten – Elektrik/Steuerung" bezieht sich ausschließlich auf Fördersysteme, die mit Antriebsmotor ausgeliefert wurden! Die Fördersysteme ohne Antriebsmotor gelten als unvollständige Maschinen im Sinne der Maschinenrichtlinie 2006/42/EG!

Am Fördersystem (komplett) sind verschiedene elektrische Bauteile als Betriebsmittel oder Sicherheitsbauteile verbaut.

Elektrische Betriebsmittel sind mit folgendem Warnsymbol gekennzeichnet:

"Gefährliche elektrische Spannung"

GEFAHR

Lebensgefahr durch Stromschlag durch defekte elektrische Teile, bei Berührung spannungsführender Teile, menschliches Fehlverhalten und fehlende Qualifikation

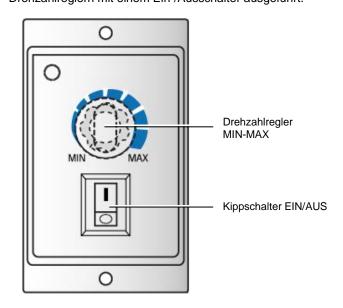
Es bestehen Gefahren durch elektrische Energie und Restenergie. Es verbleibt für ca. 5 Minuten elektrische Restenergie in Leitungen, Einrichtungen und Geräten, wenn die Maschine ausgeschaltet wird.

Im Schaltkasten und an Anschlussstellen der elektrischen Komponenten können spannungsführende Teile frei zugänglich sein!

Fördersystem vor Beginn der Arbeiten elektrisch freischalten und gegen unabsichtliches und unbefugtes Wiedereinschalten sichern!

Arbeiten an der elektrischen Versorgung oder frei zugänglichen stromführenden Bauteilen nur von Elektro-Fachpersonal durchführen lassen!

Zuwiderhandlungen (z.B. frei zugängliche Kontakte, falsches Auflegen des Erdleiters etc.) können zu elektrischen Schlägen und in der Folge zu schwersten Verletzungen bis hin zum Tod führen!

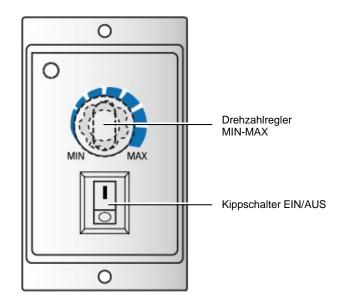

4.5.1 Antriebsmotor

Die Fördersysteme sind je nach Konfiguration mit einem der nachfolgenden Antriebsmotoren ausgeführt.

Fabrikat	Leistung [W]	Spezifikation	Spannung [V]
Panasonic	6, 25, 40, 60, 90	Induktionsmotor	1-phasig 230 V
Oriental	6, 25, 40, 60, 90	Induktions- oder Regelmotor	1-phasig 230 V

4.5.2 Elektrischer Drehzahlregler

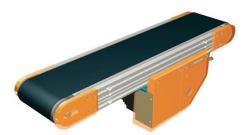
Die Fördersysteme sind je nach Motor-Konfiguration mit Drehzahlreglern mit einem Ein-/Ausschalter ausgeführt.



Drehzahlregler Antriebsmotor zum Einbau (beispielhaft)

Elektrischer Anschluss

Die Belegung der Anschlussklemmen auf der Rückseite der Drehzahlregler sind den Anschluss-Schemata im Kapitel "Anschlussplan" ab Seite 47 zu entnehmen!



Drehzahlregler Antriebsmotor (Hutschienenmontage)

4.6 Schutzabdeckungen

An der Maschine sind Gefahrenstellen mit feststehenden Schutzabdeckungen gesichert. Optional kann der Riemenverlauf mit transparenten Kunststoffabdeckungen gesichert werden.

Feststehende Schutzabdeckungen Motor, Walzen (Beispiel)

GEFAHR

Gefahr bei Missachtung des Gefahrenbereiches

Es bestehen Gefährdungen durch elektrische, mechanische und thermische Energien, sowie spezielle Restgefahren.

Darauf achten, dass sich bei demontierten Schutzabdeckungen während des Einricht-betriebs, oder beim Riemenwechsel niemand im Gefahrenbereich der Maschine aufhält!

4.7 Häufig gestellte Fragen (FAQ)

Kann die Drehrichtung des Förderers umgekehrt werden?

Eine umgekehrte Drehrichtung ist nicht empfehlenswert.

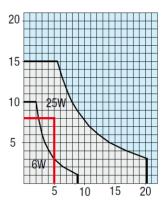
Die Förderlast ist aufgrund von Änderungen der Werkstückladung nicht mehr ausreichend. Lösungen?

Es ist eine Änderung des Motors oder Getriebes in Betracht zu ziehen. Ein Austausch des Getriebes wird empfohlen, da aufgrund von Änderungen am Motor, Modifizierungen an der Montageplatte erforderlich werden. Ein Austausch des Motors führt zu einer Änderung der Außenmaße, wodurch eine Modifizierung der Montageplatte durch den Benutzer erforderlich wird. Beachten Sie bitte, dass die Bandgeschwindigkeit sinkt, wenn durch den Austausch des Getriebekopfes die Förderlast erhöht wird.

Kann die Drehzahl des Induktionsmotors geändert werden?

Die Drehzahl des Induktionsmotors kann nicht geändert werden. Die Förderergeschwindigkeit kann jedoch durch den Austausch der Getriebeköpfe geändert werden. Die Getriebeköpfe sind über MISUMI erhältlich.

Wie hoch ist die Nutzungsdauer des Motors?


Bei Einsatz in Förderern an 8 Stunden täglich mit gleichbleibenden Lasten, beträgt die Standardnutzungsdauer 10.000 Stunden. Die Nutzungsdauer hängt hauptsächlich von den Nutzungsbedingungen ab, daher ist dieser Wert als Referenzwert zu sehen.

Kann der Motor periodisch durch Ein- und Ausschalten betrieben werden?

Bei den verwendeten Motoren handelt es sich um Motoren für den Dauerbetrieb, und häufiges Ein- und Ausschalten ist nicht empfehlenswert. Er kann jedoch für den periodischen Einsatz bei Intervallen von mind. 10 Sekunden verwendet werden.

Erklärungen zum Förderleistungsdiagramm?

Prüfen Sie zuerst die Werkstückladung und vergleichen Sie diese. Suchen Sie im Diagramm einen Punkt mit der Förderlast und der Bandgeschwindigkeit, und achten Sie darauf, dass der Punkt nicht über der Leistung eines der eingesetzten Motoren liegt. Im Beispiel, in dem die Transportlast 8kg/Einheit und die Riemendrehzahl 5m/min. beträgt, wird angezeigt, dass ein Motor mit 25W verwendet werden kann.

5. Transport, Montage, Anschluss

Sicherheitshinweise

Sicherheitshinweise im Kapitel 3, "Sicherheitshinweise" sind zu beachten!

Zusätzlich sind alle Sicherheitshinweise und -symbole an den Fördersystemen und der im Anhang befindlichen Herstellerdokumentationen zu beachten.

5.1 Transport

Die Fördersysteme werden – abhängig von der Konfiguration und des Abmaßes* – verpackt (Karton oder Holzkiste) mit einem LKW angeliefert.

Als Transportmittel dienen Paletten. Diese werden mit dem Gabelstapler verfahren.

- Fangen Sie Lasten, die aus- oder eingebaut und deren Gewicht nicht getragen werden kann, mit geeigneten Einrichtungen (Seile oder Flaschenzüge) ab!
- Prüfen Sie durch Sichtkontrolle, ob die Anschlagmittel gekennzeichnet, unbeschädigt und in gutem Zustand sind! Heben Sie das Transportgut nur an diesen Anschlagpunkten an!
- Überprüfen Sie die Lieferung sofort auf Vollzähligkeit, Beschädigungen oder sonstige Auffälligkeiten!
- Beachten Sie beim Transport die gültigen nationalen Sicherheits- und Unfallverhütungsvorschriften!
- Wenden Sie sich bei Fragen zum Transport, Montage und zur Installation der Maschine an die MISUMI Europa GmbH!
- Stellen Sie sicher, dass sich keine losen Teile auf dem Transportgut befinden, die beim Transport herunterfallen könnten!
- Lassen Sie die Energiezufuhr (Strom) nur durch autorisiertes Personal verbinden/trennen (anklemmen / abklemmen)!
- Verwenden Sie für den Transport nur technisch einwandfreies und funktionsfähiges Hebezeug mit ausreichender Tragkraft! Stellen Sie sicher, dass die Tragkraft der Hebezeuge sowie Lastaufnahme- und Transportmittel den für das Transportgut angegebenen Lasten entspricht!

*Lieferzustand

Entsprechend der Bestellung werden die Fördersysteme abhängig von deren Längenmaß des Rahmenprofils geliefert.

Länge ≤ 2000	Rahmenprofil aus einem Stück
Länge ≥ 2005	Rahmenprofil in 3 Abschnitte geteilt

GEFAHR

Gefahr durch herabstürzende Lasten

Es bestehen Gefahren durch menschliches Fehlverhalten und unzureichend oder falsch gesicherte Lasten während des Transports.

Für den innerbetrieblichen Maschinentransport ist ein Gabelstapler oder ein anderes Flurfördermittel mit ausreichender Tragkraft und ausreichender Gabellänge zu verwenden!

Rutschfeste Gummimatte auf die Gabeln legen, so dass die Maschinenkomponenten nicht verrutschen können! Beim Transport die Lage des Schwerpunktes beachten! Maschine für den LKW-Transport auf der Ladefläche mit geeigneten Mitteln sichern!

Unter schwebende Lasten treten ist verboten! Persönliche Schutzausrüstung tragen!

5.2 Montage

- Der Aufstellplatz muss über einen Stromanschluss verfügen.
- Die Trenneinrichtungen müssen leicht zu erreichen sein.

Aufstellplan und Zeichnungen

Detailliertere Informationen zu den Maßen und Gewichten der Maschinenkomponenten sind den Plänen und Zeichnungen im Anhang dieser Betriebsanleitung zu entnehmen!

5.2.1 Auspacken und Aufstellen

Der vorgesehene Standort des Fördersystems muss fest und eben sein!

Empfehlung: ebener, zulässiger Betonboden für Maschinenhallen

- Packen Sie das Fördersystem vorsichtig aus! Entfernen Sie die Kartonage und gegebenenfalls Transportsicherungen! Entsorgen Sie das Verpackungsmaterial vorschriftsgemäß!
- Beachten Sie das genaue Abmaß Ihres individuell konfigurierten Fördersystems!
- Stellen Sie das Fördersystem so auf, dass in allen Richtungen ein Arbeits- und Servicebereich (ohne Lagerbereich) von mindestens 800 mm gewährleistet ist!
- Beachten Sie die benötigte Tragfähigkeit des Fundaments von mind. 3 t/m²!

WARNUNG

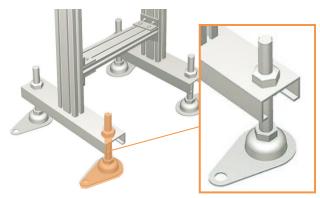
Gefahr bei Missachtung des Gefahren-, Arbeits- und Servicebereiches

Es bestehen Gefährdungen durch elektrische, mechanische und thermische Energien sowie spezielle Restgefahren bei Missachtung des Sicherheitsabstandes zum Fördersystem.

Sicherheitsabstand von 800 mm um das Fördersystem gewährleisten!

Im Arbeits- und Servicebereich nichts abstellen oder lagern!

Freier Zugang zu Wartungs- und Inspektionsstellen der Maschine ist jederzeit zu gewährleisten!


Den entsprechenden Sicherheitsabstand an der Anlage – insbesondere während des Einrichtbetriebs und Normalbetrieb einhalten!

5.2.2 Fördersystem ausrichten

Für das Ausrichten der montierten Maschinenelemente benötigen Sie Hilfsmittel, wie einen Schlosserwerkzeugkasten und eine Wasserwaage.

Die Fördersysteme sind je nach Kundenkonfiguration entweder mit verfahrbaren Lenkrollen oder höhenverstellbaren Stellschrauben ausgeführt.

- Richten Sie das Fördersystem grob zu angrenzenden verketteten Maschinen aus!
- Richten Sie die Maschine ausschließlich über die höhenverstellbaren Maschinenfüße aus!
- Überprüfen Sie die horizontale Lage sämtlicher Komponenten mit der Wasserwaage!
- Fixieren Sie anschließend die Lenkrollen oder die Stellschrauben gegen Verfahren und Verrutschen.
- Verschrauben Sie die Maschinenfüße gegebenenfalls mit dem Maschinenhallenboden!

Beispiel Stellschrauben

5.3 Betriebsbedingungen

Eigenschaft	Physikalische Bedingungen
Umgebungstem- peratur	 +5°C bis + 45°C (beheizbare Halle) (Siehe spezifische Betriebstemperaturen der Rie- men)
Betriebstempe- ratur	-10°C~40°C
Luftfeuchtigkeit	■ 30% bis 60%
Aufstellhöhe	■ bis 1000 m NN
Explosions-fä- hige Atmosphäre	 Einsatz in explosionsfähiger Atmosphäre verboten
Verschmutzung	keine hohe Verschmutzung durch Öle, Wasser, Staub, Säuren und korrosive Gase
Sonstiges	keine direkte Sonneneinstrahlung
	ausreichende Beleuchtung; 250 Lx (ArbStättV §7)
	Wenn der Arbeitsraum nicht genügend ausgeleuchtet ist, dann ist an der Maschine zusätzlich eine Arbeitsplatzbeleuchtung vorzusehen!
	 ausreichende Belüftung des Arbeitsraumes (Belastung des Bedieners)
	 Maschine verfügt über keinen Ex-Schutz

5.4 Anschluss

Hinweis

Das Kapitel "Anschluss" bezieht sich ausschließlich auf Fördersysteme die mit Antriebsmotor ausgeliefert wurden! Die Fördersysteme ohne Antriebsmotor gelten als unvollständige Maschinen im Sinne der Maschinenrichtlinie 2006/42/EG!

Beachten Sie die Beschreibung zum Anschluss von Fremdantrieben im Kapitel 5.6, ab Seite 49!

Nachdem die Maschine aufgestellt wurde, muss der Anschluss der elektrischen, steuerungstechnischen Betriebsmittel durch Fachpersonal erfolgen.

WARNUNG

Verletzungsgefahr durch unerwartetem An-

Es besteht während des Betriebsmittelanschlusses die Gefahr, dass die Maschine unerwartet anläuft oder Bewegungen ausführt.

Maschine während der Installation gegen unbeabsichtigtes Einschalten sichern!

Persönliche Schutzausrüstung tragen!

Darauf achten, dass während der Installation keine unbefugten Personen Zugang zu der Maschine erhalten! Dritten das Betreten des Arbeits- und Servicebereichs verbieten!

- Verlegen Sie Anschlussleitungen zum Fördersystem zugentlastend, so dass keine Gefahrenstellen entstehen!
- Lassen Sie den Anschluss gemäß den Anschlussplänen – der elektrischen Versorgung nur von Elektro-Fachpersonal durchführen, welches die örtlichen Anschluss- und Sicherheitsvorschriften kennt!

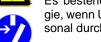
5.4.1 Anschlussstellen der Maschine

Zum Betrieb des Fördersystems wird ein elektrischer Anschluss benötigt. Die Schnittstellen der Maschine sind herstellerseitig entsprechend vorbereitet.

Wurden herstellerseitig keine Elektroeinrichtungen montiert, so muss die Elektroinstallation von einer Fachkraft des Betreibers vorgenommen werden. Das Anschlussschema ist im Klemmkasten oder in den beiliegenden Anschlussplänen des Motors ersichtlich.

Achtung

Am elektrischen Anschluss der Maschine muss geprüft werden, ob die vorhandene Netzspannung mit der auf der Maschine angegebenen Netzspannung übereinstimmt. In den technischen Daten, Kapitel 4.1, ist die Absicherung angegeben


Die Rückstromführung ist mit dem Erdanschluss zu erden. Erdleiter und Anschlusskabel müssen den gleichen Querschnitt haben.

Die Montage des Drehzahlreglers "Oriental" erfolgt in Gehäusen

GEFAHR

Lebensgefahr durch Stromschlag

Es bestehen Gefahren durch elektrische Energie, wenn Umrüstarbeiten durch unbefugtes Personal durchgeführt werden.

Fördersystem vor Beginn der Arbeiten elektrisch freischalten und gegen unabsichtliches und unbefugtes Wiedereinschalten sichern!

Elektrische Installationen dürfen ausschließlich von einer Elektrofachkraft oder unter ihrer direkten Aufsicht durchgeführt werden!

Zuwiderhandlungen (z.B. frei zugängliche Kontakte, falsches Auflegen des Erdleiters etc.) können zu elektrischen Schlägen und in der Folge zu schwersten Verletzungen bis hin zum Tod führen!

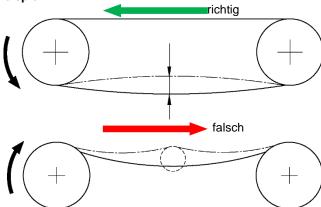
In Abhängigkeit des an dem Förderband verbauten Motors entnehmen Sie die Informationen für das korrekte elektrische Anschließen dem Anschlussschema A und B (vgl. Kapitel "Anschlussplan" ab Seite 47). Hierbei gilt folgende Zuordnung:

Motor Fabrikat "Panasonic": Schema A

Motor Fabrikat "Oriental": Schema B

Hinweis

Regler und Kondensator müssen in einem dafür zugelassenen Gehäuse (z. B. DIN EN 60204-1/ IEC 60204-1/ VDE 0113-1 in ihrer gültigen Fassung) installiert werden. Hierbei muss auch eine entsprechende Absicherung (z. B. Sicherungsautomat) vorgesehen werden.


Achtung

Aufgrund der verschiedenen Konfigurationsmöglichkeiten ist keine allgemeingültige Aussage zur Abhängigkeit des Drehrichtungssinns von der Anschlussart möglich, da die Drehrichtung von der jeweiligen Getriebekonstruktion (und somit letztlich vom gelieferten Untersetzungsverhältnis) abhängt.

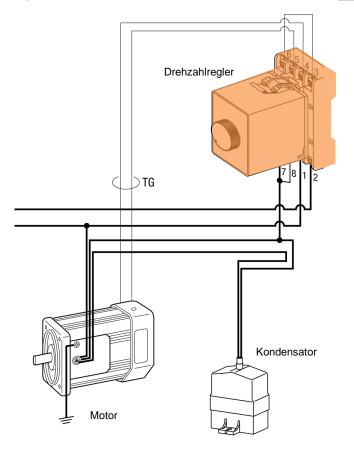
Die Drehrichtung des Motors ändert sich je nach Untersetzungsverhältnis, daher muss die Förderrichtung durch die Anschlüsse vorgegeben werden.

Bitte beachten Sie, dass der Förderer nicht in umgekehrter Richtung betrieben werden kann! Der Betrieb ist nur in vorgegebener Laufrichtung zulässig!

Beispiel:

Laufrichtung der Fördersysteme

VORSICHT


Zerstörung des Motors

Wenn das Fördersystem während der Inbetriebnahme längere Zeit entgegen der zugelassenen Förderrichtung betrieben wird, kann es zerstört werden.

Förderbetrieb in entgegengesetzter Richtung so gering wie möglich halten!

Nach dem elektrischen Anschluss des Fördersystems ist durch kurzzeitiges Einschalten (maximal einige Sekunden) zu prüfen, ob die vorgeschriebene Förderrichtung gegeben ist. Sollte dies nicht der Fall sein, ist die Klemmenbelegung, wie im Anschlussschema gezeigt, zu ändern!

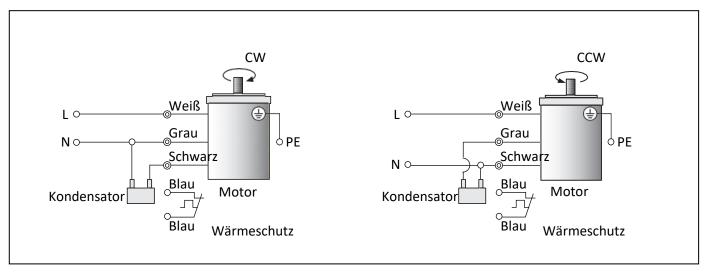
Anschluss-Beispiel - Motorvariante mit Regler

WARNUNG

Stolpergefahr durch falsch verlegte Kabel

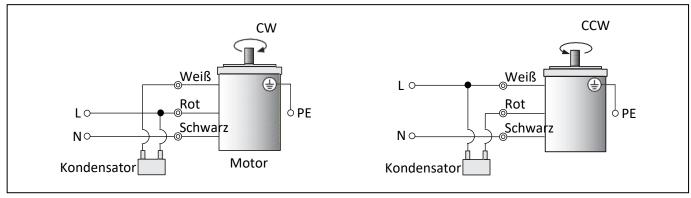
Es besteht Verletzungsgefahr, wenn Personen über falsch oder ungünstig verlegte Kabel stolpern.

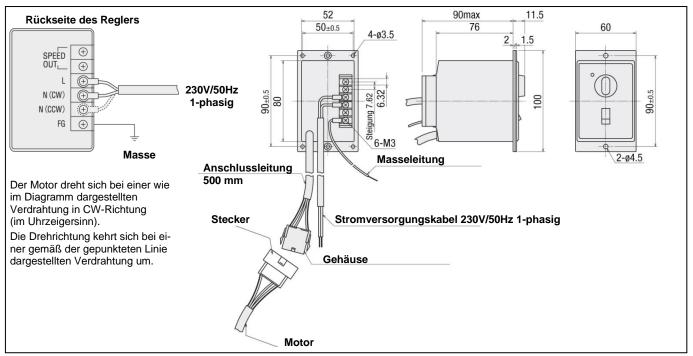
Persönliche Schutzausrüstung tragen!

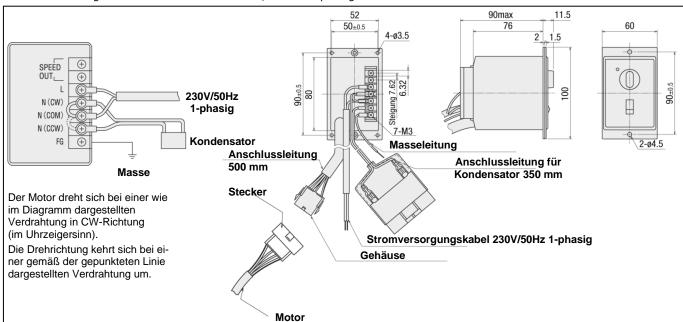

Kabel und Leitungen in Kabelschächten/-kanälen verlegen!

Installationsbereich absperren!

5.5 Anschlussplan


5.5.1 Motorhersteller A (Panasonic-Motor)


Anschlussbild Induktionsmotor 6W-25W-40W-60W-90W-230V/50Hz-1-phasig Alle Motoren sind mit einem Wärmeschutz ausgestattet, außer dem 6W-Motor.


5.5.2 Motorhersteller B (Oriental-Motor)

Anschlussbild Induktionsmotor 6W-25W-40W-60W-90W - 230V/50Hz - 1-phasig

Anschlussbild Regelmotor 6W-25W-40W - 230V/50Hz - 1-phasig

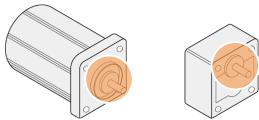
Anschlussbild Regelmotor 60W-90W - 230V/50Hz - 1-phasig

5.6 Anschluss Fremdantrieb

Wichtig

Die betreiberseitig beigestellten Antriebsmotoren (Fremdantriebe) müssen die in Kapitel 4.5.1, ab Seite 41 angegebenen technischen Vorgaben erfüllen.

Für einen sicheren und fachgerechten Anschluss eines Fremdantriebs sind nachfolgende grundlegende Eigenschaften und Maße Voraussetzung.


Antriebsmoment Fördergeschwindigkeit Riemen-Formelliste Maße

- ► Kapitel 5.6.1, ab Seite 49
- ► Kapitel 5.6.2, ab Seite 49
- ► Kapitel 4.4.2.1, ab Seite 39
- Kapitel 5.6.3, ab Seite 49

5.6.1 Maximal zulässiges Drehmoment

Die nachfolgenden Werte beziehen sich auf das maximal zulässige Drehmoment am Motor- bzw. Getriebeantriebsrad.

Antriebsleistung	Drehmoment max.
3,5 W	0,294 Nm
6 W	2,45 Nm
15 W	4,9 Nm
25 W	7,84 Nm
40 W	9,8 Nm
60 W	19,6 Nm
90 W	19,6 Nm

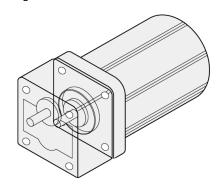
Motorantriebsrad (links), Getriebeantriebsrad (rechts)

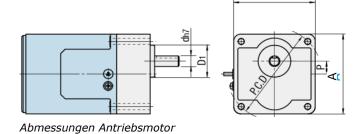
5.6.2 Maximal zulässige Fördergeschwindigkeit

Тур	V _{max}	Тур	V _{max}
SVKAE	67.7 m/min	CVGCE	56.5 m/min
SVKBE	67.7 m/min	CVGNE	56.5 m/min
SVKNE	56.5 m/min	CVGRE	56.5 m/min
SVKRE	56.5 m/min	CVGBE	67.7 m/min
GVHAE	67.7 m/min	CVGDE	56.5 m/min
GVFAE	67.7 m/min	CVGPE	56.5 m/min
GVHNE	56.5 m/min	CVGWE	56.5 m/min
GVFNE	56.5 m/min	CVSEE	67.7 m/min
GVTSAE	36.0 m/min	CVSFE	67.7m/min
GVTSNE	36.0 m/min	CVSXE	56.5 m/min
GVTWAUE	36.0 m/min	CVSFDE	56.5 m/min
GVTWASE	36.0 m/min	CVSTCE	14.4 m/min
GVTWNUE	36.0 m/min	CVSTRE	14.4 m/min
GVTWNSE	36.0 m/min	CVSJAE	56.5 m/min

CVGAE	67.7m/min
CVLPAE	56.5 m/min
CVMAE	67.7 m/min
CVMBE	67.7 m/min
CVSSAE	22.6 m/min
CVSPAE	64.4 m/min
CVGTAE	72.0 m/min
CVGTBE	64.8 m/min
CVGTNE	57.6 m/min
CVGTPE	57.6 m/min
CVSYE	56.5 m/min
CVSFAE	27.1 m/min
CVSFBE	22.6 m/min

CVSFCE


CVSMAE	26.4 m/min
CVDSAE	37.7 m/min
CVDSBE	37.7 m/min
CVSPCE	64.4 m/min

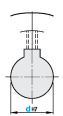

5.6.3 Abmessungen Antriebsmotor

67.7 m/min

An- triebsmo- tor	Anwendung
Indukti- onsmo- tor	 für den kontinuierlichen Betrieb (konstante Fördergeschwindigkeit) in eine Förderrichtung
Regel- motor	 für den regelbaren Betrieb (regelbare Förderge- schwindigkeit) mit Potentiometer zur Drehzahlan- passung

Die nachfolgenden Darstellungen und Maße gelten für Induktions- und Regelmotoren.

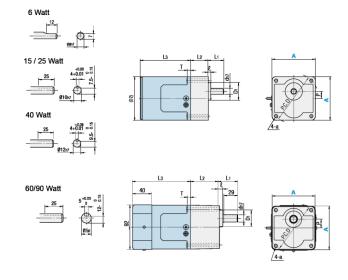
Α	Rechteckmaß
PCD	Teilkreisdurchmesser
D1	Flanschdurchmesser
d	Antriebswelle Durchmesser
Р	Wellenversatz

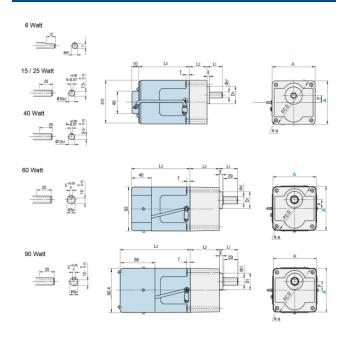


(W)	A	d	Wellen To- leranz	D ₁	L ₁	L ₂	L ₃	e	т	(D ₂)	Р	а	PCD Ø	Passfeder	Passfeder Toleranz
3,5	22	Ø6	h7	12	14	29,5 (34,5)	28	2,1	-	22	0	3,5	18	abgeflachte Welle	
6	60	Ø8	h7	25		26 (33)	75	6		65	10	4.5	70	abgeflachte Welle	
15	70	Ø 10	h7	30	32	30 (36)	80	5	7	74	15	5.5	82	4	+0.01 / +0.06
25	80	טו ש	h7	30	32	30	85	6		86	15	5.5	94	4	+0.01 / +0.06
40		Ø 12	h7	36		37	105	5		95				4	+0.01 / +0.06
60	90	~	h7				120 [150]		7.5	-	18	6.5	104	5	+0.00 / +0.05
90		Ø 15	h7	34	38	60	135 [172]	7		-				5	+0.00 / +0.05

Werte in () sind Maße für Getriebeköpfe mit einem Untersetzungsverhältnis ≥ 30 Werte in [] sind Maße für Regelmotoren

5.6.3.1 Wellenform/Antriebsradform


Antriebsräder haben Passfedernuten (außer 3,5 und 6 W-Antriebsmotoren). Nachfolgend werden die Abmessungen der Passfedern und der Passfedernuten dargestellt.



5.6.3.2 Skizze für Induktionsmotoren

5.6.3.3 Skizze für Regelmotoren

5.6.4 Antriebsmotor-Adapterplatten

Zur Bestimmung der notwendigen Adapterplatte eines Antriebmotors müssen der Förderer-Typ, die Motorposition und die Motorleistung bekannt sein. Diese Daten sind der nachfolgenden tabellarischen Übersicht zu entnehmen.

Тур	Motorposition	Leistung
SVKAE/ SVKBE	Standard/ MK	6 W
SVKAE/ SVKBE	Standard/ MK	25 W
SVKNE/ SVKRE	Standard/ MP	6 W
SVKNE/ SVKRE	Standard/ MP	25 W
SVKNE/ SVKRE	Standard/ MP	40 W
SVKNE/ SVKRE	Standard/ MP	90 W
GVHAE/ GVFAE	Standard/ MK	6 W
GVHAE/ GVFAE	Standard/ MK	25 W
GVHNE/ GVFNE	Standard/ MP	25 W
GVHNE/ GVFNE	Standard/ MP	40 W
GVHNE/ GVFNE	Standard/ MP	60 W
GVHNE/ GVFNE	Standard/ MP	90 W
GVTSAE	Standard/ MK	6 W
GVTSAE	Standard/ MK	25 W
GVTWAUE/ GVTWASE	Standard/ MK	6 W
GVTWAUE/ GVTWASE	Standard/ MK	25 W
GVTWNUE/ GVTWNSE	Standard/ MP	6 W
GVTWNUE/ GVTWNSE	Standard/ MP	25 W
CVGAE	Standard/ MK	6 W
CVGAE	Standard/ MK	25 W
CVLPAE	Standard/ MP	25 W
CVLPAE	Standard/ MP	40 W
CVMAE/ CVMBE	Standard/ MK	25 W
CVMAE/ CVMBE	Standard/ MK	40 W
CVSSAE	Standard/ MK	6 W
CVSSAE	Standard/ MK	25 W
CVSSAE	Standard/ MK	40 W
CVSPAE	Standard/ MK	25 W
CVSPAE	Standard/ MK	40 W
CVGTAE	Standard/ MK	6 W
CVGTAE	Standard/ MK	25 W
CVGTBE	Standard/ MK	25 W
CVGTBE	Standard/ MK	40 W
CVGTNE	Standard/ MP	6 W
CVGTNE	Standard/ MP	25 W
CVGTPE	Standard/ MP	25 W
CVGTPE	Standard/ MP	40 W
CVSYE	Standard/ MP	60 W
CVSYE	Standard/ MP	90 W
CVSFAE	Standard/ MK	6 W
CVSFAE	Standard/ MK	25 W
CVSFBE	Standard/ MK	6 W
CVSFBE	Standard/ MK	25 W

Hinweis

Entsprechend der Referenztabelle kann die entsprechende Adapterplatten-Skizze bei Bedarf von der MISUMI Europa GmbH angefordert werden!

Turn	Matarnasition	Laistung
Тур	Motorposition	Leistung
CVSFBE	Standard/ MK	40 W
CVSFCE	Standard/ MK	6 W
CVSFCE	Standard/ MK	25 W
CVGCE	Standard/ MK	6 W
CVGCE	Standard/ MK	25 W
CVGNE	Standard/ MK	40 W
CVGNE	Standard/ MP	6 W
CVGNE	Standard/ MP	25 W
CVGRE	Standard/ MP	6 W
CVGRE	Standard/ MP	25 W
CVGRE	Standard/ MP	40 W
CVGBE	Standard/ MK	6 W
CVGBE	Standard/ MK	25 W
CVGDE	Standard/ MK	6 W
CVGDE	Standard/ MK	25 W
CVGDE	Standard/ MK	40 W
CVGPE	Standard/ MP	6 W
CVGPE	Standard/ MP	25 W
CVGWE	Standard/ MP	6 W
CVGWE	Standard/ MP	25 W
CVGWE	Standard/ MP	40 W
CVSEE/ CVSFE	Standard/ MK	60 W
CVSEE/ CVSFE	Standard/ MK	90 W
CVSXE	Standard/ MP	60 W
CVSXE	Standard/ MP	90 W
CVSFDE	Standard/ MK	6 W
CVSFDE	Standard/ MK	25 W
CVSFDE	Standard/ MK	40 W
CVSTCE	Standard/ MK	6 W
CVSTRE	Standard/ MP	6 W
CVSJAE	Standard/ MP	6 W
CVSJAE	Standard/ MP	25 W
CVSMAE	Standard	6 W
CVDSAE	Standard/ MK	40 W
CVDSBE	Standard/ MK	40 W
CVSPCE	Standard/ MK	6 W
CVSPCE	Standard/ MK	25 W

6. Bedienung

Sicherheitshinweise

Sicherheitshinweise im Kapitel 3, "Sicherheitshinweise" sind zu beachten!

Zusätzlich sind alle Sicherheitshinweise und -symbole an den Fördersystemen und der im Anhang befindlichen Herstellerdokumentationen beachten.

WARNUNG

Gefahr durch Benutzung Unbefugter

Es bestehen Gefahren, wenn Unbefugte während des Anschlusses und der Inbetriebnahme Zugriff zur Maschine haben.

Maschine nach Arbeitsende gegen unbefugtes Wiedereinschalten sichern!

Die Inbetriebnahme der Maschine ist nur nach einer Unterweisung oder Schulung erlaubt!

Das eingewiesene und ausgebildete Personal muss die Schutz- und Sicherheitseinrichtungen vor Schichtbeginn auf ihren ordnungsgemäßen Zustand überprüfen. Sollten dabei Mängel festgestellt werden, ist die Maschine solange still zu setzen, bis diese Mängel beseitigt sind.

Wichtig

Die Gefahrenbereiche der Maschine beachten!

Nach dem Einschalten der Maschine keine Reinigungsarbeiten in den Wirkbereichen der Maschine vornehmen!

Traglasten der Förderer beachten! Keinesfalls überlasten!

6.1 Inbetriebnahme

Achtung

Verantwortung des in Betrieb nehmenden Personals festlegen!

Defekte Maschinenteile sofort austauschen. Zur zweifelsfreien Identifikation des Bauteiles die Zusatzunterlagen im Anhang dieser Betriebsanleitung verwenden!

Keine Sicherheitseinrichtungen entfernen, überbrücken oder ohne diese arbeiten!

Installationsbedingungen bei der Erstinbetriebnahme bzw. nach längerem Stillstand überprüfen!

Die Inbetriebnahme der Maschine ist solange untersagt, bis festgestellt wurde, dass die Maschine allen grundlegenden Anforderungen der Richtlinie 2006/42/EG entspricht!

6.2 Funktionskontrollen vor Betrieb

GEFAHR

Lebensgefahr durch Schäden und Defekte

Es besteht Lebensgefahr durch Schäden und Defekte an der Maschine.

Maschine im Falle einer lokalisierten und identifizierten Beschädigung keinesfalls in Betrieb nehmen! Defekte Komponenten austauschen!

Elektrische und mechanische Komponenten der Maschine auf Beschädigungen kontrollieren!

Maschine gemäß Wartungsintervallen gründlich warten! Der Betreiber muss die ordnungsgemäße Durchführung der Wartung nach Anleitung kontrollieren!

- Führen Sie vor der Inbetriebnahme des Fördersystems einen Funktionstest durch und überzeugen Sie sich vom ordnungsgemäßen Zustand der Maschine!
- Prüfen Sie alle Schutzabdeckungen des Fördersystems auf Vorhandensein und Unversehrtheit!

6.3 Fördersystem einschalten

Das Einschalten des Fördersystems erfolgt je nach Konfiguration entweder am Motorschutzschalter oder am Drehzahlregler.

Im Falle der Einbindung des Transportsystems in ein übergeordnetes Bedien- und Steuerkonzept, erfolgt das Einschalten möglicherweise über die Einschaltprozedur der Gesamtmaschine/-anlage. Ein separates Ein- und Ausschalten des Fördersystems ist dann nicht notwendig.

Ein-/Ausschalter

GEFAHR

Lebensgefahr durch falsche Bedienung

Es besteht Lebensgefahr sowie Gefahren für die Maschine, wenn diese durch unerfahrenes, unqualifiziertes und nicht eingewiesenes Personal bedient wird.

Bedienung nur durch eingewiesenes Personal! Kompetenzen sind vom Betreiber verbindlich festzulegen!

Bei Wartungs-, Rüst- oder Reinigungsarbeiten ist die Maschine auszuschalten!

7. Außerbetriebnahme

Sicherheitshinweise

Sicherheitshinweise im Kapitel 3, "Sicherheitshinweise" sind zu beachten!

Zusätzlich sind alle Sicherheitshinweise und -symbole an den Fördersystemen und der im Anhang befindlichen Herstellerdokumentationen beachten.

7.1 Fördersystem ausschalten

Wichtig

Das Fördersystem muss bei Einbindung in ein übergeordnetes Steuer- und Bedienkonzept nicht in jedem Fall bei Schicht-Ende separat ausgeschaltet werden.

Abschalten bei Schicht-Ende

- 1. Schalten Sie die Lastspannung aus!
- Sichern Sie die Maschine nach Arbeitsende gegen unbefugtes Wiedereinschalten!

Abschalten längerer Zeitraum

- Fahren Sie das Fördersystem leer! Vergewissern Sie sich, dass sich kein Transportgut mehr auf dem Förderer befindet!
- 2. Schalten Sie die Lastspannung aus!
- Trennen Sie das F\u00f6rdersystem physisch von der Stromzufuhr!

7.2 Stillsetzen der Maschine

Das Fördersystem muss bei längeren Stillstandzeiten, bei einer Verlagerung sowie bei der endgültigen Stilllegung ordnungsgemäß außer Betrieb genommen werden.

GEFAHR

Gefahr bei Trennung der Energiezufuhren durch unautorisiertes Personal

Es bestehen grundsätzlich Gefahren, wenn das Fördersystem von unerfahrenem und nicht dafür qualifiziertem Personal von den Betriebsmitteln getrennt wird.

Das Trennen der Energiezufuhren ausschließlich von autorisiertem Personal durchführen lassen!

- Fahren Sie das F\u00f6rdersystem leer! Vergewissern Sie sich das sich kein Transportgut mehr auf dem F\u00f6rderer befindet!
- 2. Schalten Sie das Fördersystem aus!
- Trennen Sie sämtliche Energiezufuhren des Fördersystems!
- Benetzen Sie blanke Metallteile des Fördersystems bei Einlagerung leicht mit Öl!
- Decken Sie das F\u00f6rdersystem bei Einlagerung gegen Verschmutzung ab!
- 6. Lagern Sie das Fördersystem auf Transportpaletten!

WARNUNG

Verletzungsgefahr und Gefahr der Umweltverschmutzung durch fehlende Qualifikation des Personals

Während des Stilllegens des Fördersystems kann es zu Gefahren kommen, wenn das Personal nicht über die entsprechende Qualifikation und Kompetenz verfügt.

Stilllegung durch autorisiertes Fachpersonal durchführen lassen!

Betriebsmittel und Maschine nur durch Fachpersonal entsorgen lassen!

Örtliche Entsorgungsvorschriften beachten!

7.3 Lagerung der Maschine

Das Fördersystem muss bei längeren Stillstandzeiten sowie bei der endgültigen Stilllegung ordnungsgemäß gelagert bzw. entsorgt werden.

Für die Zwischenlagerung des Fördersystems gilt, dass die Lagerstätte kühl und trocken sein muss, um Korrosion an einzelnen Teilen der Maschine nicht zu begünstigen. Die Frachtverpackung ist nach Anlieferung für die Lagerdauer von 3 Monaten ausgelegt.

Eigenschaft	Empfehlung
Lagerort	trockener, geschlossener Raum
Temperaturen	-20°C~60°C
relative Luftfeuch- tigkeit	max. 85% (keine Kondensation!) Trockenmittel in Schaltschrank/-kasten

WARNUNG

Verletzungsgefahr durch Kippen/Stürzen

Es bestehen Gefahren durch fehlerhafte Lagerung oder fehlende Berücksichtigung des Schwerpunktes, dass das Fördersystem kippt und umstürzt.

Fördersystem gegen unbeabsichtigtes Kippen und Instabilität sichern!

Schwerpunkt beachten!

7.4 Entsorgung der Maschine

- Entsorgen Sie Verpackungsmaterial gemäß der landesüblichen Vorschriften!
- Entsorgen Sie Kartonagen, Schutzverpackungen aus Plastik und Konservierungsstoffe separat und fachgerecht!
- Lassen Sie die Maschine wegen der Gefahr möglicher Umweltverschmutzung durch ein zugelassenes Fachunternehmen entsorgen!

Die Entsorgung des Fördersystems (auch Maschinenteile, Betriebsmittel) richtet sich nach den örtlichen Entsorgungsvorschriften sowie den im Anwenderland gegebenen Umweltschutzgesetzen.

Hat die Maschine das Ende ihres Lebenszyklus erreicht, ist bei deren Abbau für eine sichere und fachgerechte Entsorgung, insbesondere der für die Umwelt schädlichen Teile oder Stoffe zu sorgen. Dazu gehören u. a. Schmiermittel, Kunststoffe, Batterien.

8. Rüstung und Zubehör

Sicherheitshinweise

Sicherheitshinweise im Kapitel 3, "Sicherheitshinweise" sind zu beachten!

Zusätzlich sind alle Sicherheitshinweise und -symbole an den Fördersystemen und der im Anhang befindlichen Herstellerdokumentationen beachten.

GEFAHR

Quetsch- und Lebensgefahr durch Eingriff Unbefugter

Es bestehen Gefahren, wenn Umrüstarbeiten durch unbefugtes Personal durchgeführt werden.

Maschine vor dem Umrüstvorgang von der Energiezufuhr trennen und gegen unabsichtliches und unbefugtes Wiedereinschalten sichern!

Sicherstellen, dass Rüstarbeiten nur von autorisiertem Fachpersonal durchgeführt werden!

Persönliche Schutzausrüstung tragen!

8.1 Antrieb wechseln

Im Falle eines Ausfalls oder Defekts muss der Motor des Fördersystems ausgetauscht werden. Abhängig vom Fabrikat des Motors, unterscheiden sich die Abläufe des Motorwechsels.

Herstellerdokumentation Motoren

Beachten Sie die Hinweise zur Montage und Demontage des Motors in den jeweiligen Herstellerdokumentationen! Diese liegen dieser Betriebsanleitung bei.

GEFAHR

Lebensgefahr durch Stromschlag

Es bestehen Gefahren, durch elektrische Energie, wenn Umrüstarbeiten durch unbefugtes Personal durchgeführt werden.

Fördersystem vor Beginn der Arbeiten elektrisch freischalten und gegen unabsichtliches und unbefugtes Wiedereinschalten sichern!

Sicherstellen, dass Rüstarbeiten nur von autorisiertem Fachpersonal durchgeführt werden!

8.2 Riemen wechseln

Beim Erreichen der Verschleißgrenze oder mit wechselnden Anforderungen an den Transportriemen durch Veränderung des Fördergutes, muss der Riemen des Förderers ausgetauscht werden.

Die nachfolgend beschriebenen Riemenwechsel gelten sowohl für Flachriemen-, Synchronriemen- und Edelstahlriemen-Förderer.

WARNUNG

Verletzungsgefahr durch fehlenden Riemen

Es besteht Verletzungsgefahr, wenn der Förderriemen nicht aufgelegt ist und so bei eingeschaltetem Fördersystem bewegte Komponenten erreicht werden können.

Während des Riemenwechsels oder bei nicht aufgelegtem Riemen muss das Fördersystem sicher von der elektrischen Spannungsversorgung getrennt sein!

Fördersystem niemals ohne Riemen einschalten, da dieser gleichzeitig eine trennende Schutzeinrichtung darstellt!

VORSICHT

Überlastung durch hohe Riemenspannung

Es besteht die Gefahr der Überlastung und Zerstörung von Motor und Riemen, wenn dieser zu sehr gespannt wird.

Riemenspannung so einstellen, dass bei einem blockierten Riemen die Antriebsrolle durchdrehen kann!

Wichtig

Falls das Fördersystem ohne Förderriemen von MISUMI bezogen wurde, so ist dessen Betrieb nur mit aufgelegtem Original-MISUMI-Förderriemen gestattet!

Alternativ können Förderriemen die den technischen Merkmalen der Original-MISUMI-Förderriemen entsprechen, eingesetzt werden! Beachten Sie die technischen Merkmale im Kapitel 4.4.1, ab Seite 35!

Anderenfalls verliert die EG-Konformitäts-erklärung ihre Gültigkeit! Generell haftet MISUMI Europa GmbH nicht für Schäden oder Folgeschäden, die aufgrund der Verwendung eines nicht von MISUMI Europa GmbH gelieferten Förderriemens!

Achten Sie darauf, dass der neu einzusetzende Riemen für den Förderer und das Fördergut geeignet ist!

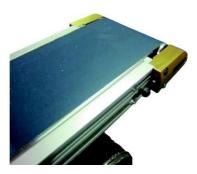
Verwenden Sie Förderriemen von MISUMI Europa GmbH!

8.2.1 Riemen wechseln - Kopfantrieb

Vorgehensweise beim Austausch des Riemens bei Transportsystemen mit Kopfantrieb

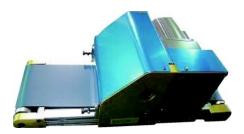
- Schalten Sie den Hauptschalter aus und trennen Sie die Stromzufuhr durch Ziehen des Netzsteckers des Förderers!
- Markieren Sie die jeweilige Position der Schrauben am Profil, um die eingestellte Riemenspannung festzuhalten!

 Lösen Sie die Spannungseinstellungsschraube auf beiden Seiten! Der Riemen löst sich, durch Lösen der Verschraubung.


 Lösen Sie den Riemen vollständig und schrauben Sie den Riemenscheibenhalter ab!

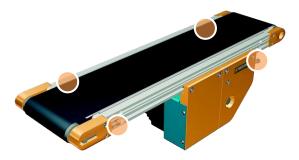
Entnehmen Sie den Riemen! Achten Sie beim Austausch darauf, dass die Riemenscheiben nicht herausgezogen werden!

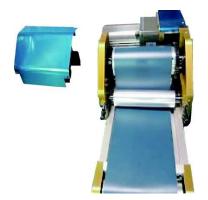
- 6. Setzen Sie den neuen Riemen entsprechend der Förderrichtung ein! Beachten Sie die Markierung der Förderrichtung auf der Riemenrückseite!
- Installieren Sie den Riemen in umgekehrter Reihenfolge zu der angegebenen Vorgehensweise! Montieren Sie den Riemenscheibenhalter!
- 8. Stellen Sie abschließend die Riemenspannung mit den Spannungseinstellungsschrauben ein!


9. Führen Sie eine Sicht- und Funktionskontrolle nach dem Beenden des Riemenwechsels am Förderer durch! Achten Sie inbesondere auf nicht festgezogene Schraubverbindungen und lose Teile wie Werkzeuge und Schrauben im Wirkbereich des Förderers!

8.2.2 Riemen wechseln - Mittelantrieb

Vorgehensweise beim Austausch des Riemens bei Transportsystemen mit Mittelantrieb


- Schalten Sie den Hauptschalter aus und trennen Sie die Stromzufuhr durch Ziehen des Netzsteckers des Förderers!
- 2. Drehen Sie den Förderer um 180°!


Markieren Sie die jeweilige Position der Schrauben am Profil, um die eingestellte Riemenspannung festzuhalten!

 Lösen Sie die 4 Spannungseinstellungsschrauben! Der Riemen löst sich, durch Lösen der Verschraubung.

Lösen Sie die 5 Schrauben der blauen Abdeckung und nehmen diese ab!

- 6. Legen Sie den Förderer auf die Seite, um die Verschraubung der gelben Abdeckung zu entfernen! Halten Sie die Rollen mit der Hand fest, um diese gegen Herausfallen zu sichern!
- 7. Entfernen Sie die gelbe Abdeckung!
- 8. Entnehmen Sie die Rollen vorsichtig!

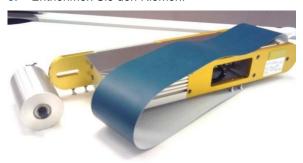
9. Merken Sie sich den Riemenverlauf um die Rollen für das spätere Einsetzen des neuen Riemens!

- Lösen Sie den Riemen vollständig und entnehmen Sie diesen!
- 11. Setzen Sie den neuen Riemen entsprechend der Förderrichtung ein! Beachten Sie die Markierung der Förderrichtung auf der Riemenrückseite!
- **12.** Setzen Sie die entnommen Rollen ein und montieren Sie die gelbe Abdeckung wieder!


13. Stellen Sie abschließend die Riemenspannung mit den Spannungseinstellungs-Schrauben ein! Achten Sie dabei darauf, dass der Riemen nicht auf einer Seite m\u00e4andriert.

8.2.3 Riemen wechseln – Integrierter Antrieb

Vorgehensweise beim Austausch des Riemens bei Transportsystemen mit integriertem Antrieb


- Schalten Sie den Hauptschalter aus und trennen Sie die Stromzufuhr durch Ziehen des Netzsteckers des Förderers!
- Lösen Sie die beiden Verschraubungen stirnseitig der Riemenscheibenabdeckung des Förderers und entnehmen diese!

 Lösen Sie die beiden Verschraubungen der Riemenscheibenabdeckung seitlich des Förderers und entnehmen diese! Beachten Sie dabei, dass Sie die Verschraubungen nur auf einer Seite des Förderers zum Riemenwechsel lösen müssen.

- 4. Heben Sie die Riemenscheibenabdeckung ab!
- 5. Entnehmen Sie den Riemen!

- 6. Setzen Sie den neuen Riemen ein und montieren Sie die Abdeckung wieder in umgekehrter Reihenfolge zur Demontage!
- Stellen Sie abschließend die Riemenspannung mit den Spannungseinstellungsschrauben ein!

8.3 Mäandrierkorrektur

Die Riemen der Förderer werden herstellerseitig voreingestellt. Dennoch kann es durch die Verwendung oder nach einem Riemen-Wechsel zu einem mäanderförmigen Verlauf kommen. Der gerade Riemenverlauf muss dann entsprechend neu eingestellt bzw. nachjustiert werden.

Für die Mäandrierkorrektur müssen die Förderer währenddessen in Betrieb sein.

VORSICHT

Übersteuerung des Riemens durch einseitige Einstellung

Es besteht die Gefahr der Beschädigung der Riemenkante durch Übersteuerung des Riemens, wenn dieser zu stark einseitig eingestellt wird.

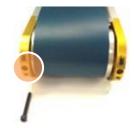
Mäandrierkorrektur Schritt für Schritt unter visueller Kontrolle des Riemenverlaufs durchführen!

8.3.1 Mäandrierkorrektur Kopfantrieb-Förderer

- Stellen Sie für die Mäandrierkorrektur den Förderer auf einen ebenen und festen Untergrund auf! Sichern Sie den Stand des Förderers gegebenenfalls durch Verstiftung am Boden.
- Richten Sie den F\u00f6rderer mittels einer Wasserwaage waagerecht aus!
- 3. Lösen Sie die Mutter der Spannungseinstellungs-Schraube, auf der Mäandrierseite des Förderers, um die Schraube anschließend langsam anzuziehen! Beachten Sie dabei, dass Sie die Schraube wieder lösen müssen, wenn diese zu fest angezogen wurde und sich in die entgegengesetzte Richtung bewegt.
- Beobachten Sie den Riemenverlauf! Wiederholen Sie den Vorgang, falls das Mäandrieren noch besteht!
- 5. Ziehen Sie die Mutter abschließend wieder an!
- Betreiben Sie den Förderer anschließend eine gewisse Zeit, damit sich der Riemenverlauf stabilisiert!

8.3.2 Mäandrierkorrektur Mittelantrieb-Förderer

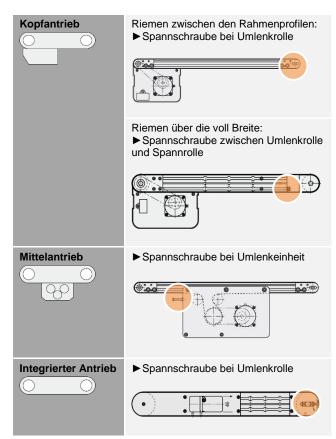
- Stellen Sie für die Mäandrierkorrektur den Förderer auf einen ebenen und festen Untergrund auf! Sichern Sie den Stand des Förderers gegebenenfalls durch Verstiftung am Boden.
- Richten Sie den F\u00f6rderer mittels einer Wasserwaage waagerecht aus!
- 3. Lösen Sie die Mutter der Spannungseinstellungs-Schraube am Mittelantrieb, auf der Mäandrierseite des Förderers, um die Schraube anschließend langsam anzuziehen! Beachten Sie dabei, dass Sie die Schraube wieder lösen müssen, wenn diese zu fest angezogen wurde und sich in die entgegengesetzte Richtung bewegt.
- Beobachten Sie den Riemenverlauf! Wiederholen Sie den Vorgang, falls das Mäandrieren noch besteht!
- 5. Ziehen Sie die Mutter abschließend wieder an!



- Betreiben Sie den Förderer anschließend eine gewisse Zeit, damit sich der Riemenverlauf stabilisiert!
- Stellen Sie mithilfe der Spannungseinstellungsschraube am Riemenscheibenhalter den vorherigen Zustand wieder her!

8.3.3 Mäandrierkorrektur – Integrierter Antrieb

- Stellen Sie für die Mäandrierkorrektur den Förderer auf einen ebenen und festen Untergrund auf! Sichern Sie den Stand des Förderers gegebenenfalls durch Verstiftung am Boden.
- Richten Sie den F\u00f6rderer mittels einer Wasserwaage waagerecht aus!
- 3. Lösen Sie die Mutter der Spannungseinstellungs-Schraube, stirnseitig auf der Mäandrierseite des Förderers, um die Schraube anschließend langsam anzuziehen! Beachten Sie dabei, dass Sie die Schraube wieder lösen müssen, wenn diese zu fest angezogen wurde und sich in die entgegengesetzte Richtung bewegt.
- Beobachten Sie den Riemenverlauf! Wiederholen Sie den Vorgang, falls das Mäandrieren noch besteht!
- 5. Ziehen Sie die Mutter abschließend wieder an!



Betreiben Sie den Förderer anschließend eine gewisse Zeit, damit sich der Riemenverlauf stabilisiert!

8.4 Riemen spannen

Entsprechend der Antriebs-Montagevarianten unterscheiden sich auch die Vorgänge der Riemenspannung.

8.5 Wiederinbetriebnahme

- Uberprüfen Sie die Schutzleiterverbindungen auf festen Sitzl
- Installieren Sie alle demontierten Bezeichnungsschilder nach dem Austausch von Kabeln neu!
- Ziehen Sie nach Rüstarbeiten gelöste Schraubenverbindungen stets fest!
- Kontrollieren Sie das Vorhandensein aller Sicherheitsund Schutzvorkehrungen (Schutzabdeckungen)!
- Entfernen Sie nach Abschluss der Arbeiten Werkzeug, Schrauben, Hilfsmittel oder andere Gegenstände aus dem Wirkbereich des Fördersystems!
- Verschließen Sie den Schaltkasten wieder und übergeben den Schlüssel dem Verantwortlichen!
- Führen Sie nach erfolgten Rüstarbeiten einen Funktionstest (Probelauf) durch!

8.6 Zubehör

Je nach Einsatzumgebung und Verwendung der Fördersysteme ist verschiedenes Zubehör verfügbar.

- Verwenden Sie ausschließlich Zubehörteile vom Hersteller oder von ihm freigegebene Lieferanten der Maschine, der MISUMI Europa GmbH!
- Entnehmen Sie Informationen zum Bestellvorgang von Zubehörteilen Kapitel "Bestellung" ab Seite 61!

Katalog

Detaillierte Informationen zu erhältlichem Zubehörund Ersatzteilen entnehmen Sie dem Katalog oder unter www.misumi-europe.com.

8.6.1 Tischständer

Zum Aufstellen der Fördersysteme können Tischständer in verschiedenen Ausführungen (I-, H-Form) mit verfahrbaren Lenkrollen oder Stellschrauben bestellt werden.

Tischständer H-Form

8.6.2 Montagehalterungen (Stützen)

Zur individuellen Montage des Fördersystems können Montagehalterungen als stützende Elemente eingesetzt werden. Verschiedene Ausführungen ermöglichen eine Vielzahl an Einsatzmöglichkeiten.

8.6.3 Metallführungsschienen

Zum linearen Ausrichten des Förderguts auf dem Fördersystem können Metall-Führungsschienen in verschiedenen Ausführungen (gerade, Z- und Y-Form) am Rahmen des Förderers montiert werden.

8.6.4 Kunststoffführungsschienen

Zum linearen Ausrichten des Förderguts auf dem Fördersystem können Führungsschienen aus technischen Kunststoffen in verschiedenen Ausführungen (gerade, Z- und Y-Form) am Rahmen des Förderers montiert werden.

8.6.5 Führungsschienen-Halterungen

Zur individuellen Montage der Führungsschienen aus Kunststoffen oder Metall können spezielle Halterungen am Förderer montiert werden.

Halter für Bandförderer-Führungsschienen aus technischen Kunststoffen -Standard

Halter für Bandförderer-Führungsschienen aus technischen Kunststoffen - Versetzt

Halter für Bandförderer-Führungsschienen-Standard

Halter für Bandförderer-Führungsschienen-Versetzt

Rundstabführungsschiene

Halter und Winkel für Rundstabführungssschiene

8.6.6 Transferwalzen

Zur Unterstützung des reibungslosen Transfers zwischen verketteten Fördersystemen können Transferwalzen zwischen den Förderern montiert werden.

8.6.7 Kunststoffabdeckungen

Zur Abdeckung der Transferstrecke können transparente Kunststoffabdeckungen in verschiedenen Formen am Förderer montiert werden.

Kunststoffabdeckungen L-Form

Kunststoffabdeckungen U-Form

8.7 Ersatzteile

Beim Auswechseln von Teilen, die der Sicherheit der Fördersysteme dienen, dürfen nur Originalteile verwendet werden, oder gleichwertige Normteile, d. h., die denselben Sicherheitsstandard aufweisen.

Ersatzteilstückliste

Für weitere Informationen siehe Ersatzteilstückliste im Anhang dieser Dokumentation!

Hinweis

Grundsätzlich gelten die "Allgemeinen Verkaufsund Lieferbedingungen" der MISUMI Europa GmbH". Diese stehen dem Betreiber spätestens seit Vertragsabschluss zur Verfügung. Mit Ihrer Unterschrift bestätigen Sie die Bestellung!

8.8 Bestellung

Wenden Sie sich bei Bestellung von Zubehör- oder Ersatzteilen an folgende Adresse:

MISUMI Europa GmbH Franklinstraße 61–63 60486 Frankfurt am Main Deutschland

E-Mail: Mail.tech@misumi-europe.com Web: www.misumi-europe.com

9

9. Wartung

Sicherheitshinweise

Sicherheitshinweise im Kapitel 3, "Sicherheitshinweise" sind zu beachten!

Zusätzlich sind alle Sicherheitshinweise und -symbole an den Fördersystemen und der im Anhang befindlichen Herstellerdokumentationen beachten.

- Beachten Sie die allgemeinen nationalen Unfallverhütungsvorschriften!
- Führen Sie alle vorgeschriebene Einstell-, Wartungsund Instandhaltungsarbeiten fristgemäß durch!
- Passen Sie die Wartungszyklen ggf. dem täglichen Bedarf an!
- Tauschen Sie defekte Maschinenteile schnellstmöglich
- Benutzen Sie nur einwandfreie Werkzeuge!
- Informieren Sie das Bedien- und Aufsichtspersonal vor Beginn der Durchführung von Wartungs- und Instandhaltungsarbeiten!
- Bringen Sie Hinweisschilder am Fördersystem an!
- Dokumentieren Sie alle vorgeschriebenen Wartungsarbeiten!
- Verwenden Sie ausschließlich Originalersatzteile, die vom Hersteller zugelassen sind – insbesondere bei sicherheitsrelevanten Bauteilen!

Technische Hilfestellung

Für technische Hilfestellung bei auftretenden Störungen, die nicht selbst behoben werden können, ist der Hersteller der Fördersysteme zu kontaktieren!

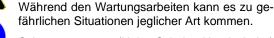
- Führen Sie vor Beginn von Wartungs- und Instandhaltungsarbeiten an dem Förderer folgende Sicherheitsvorkehrungen in der angegebenen Reihenfolge aus!
- 1. Elektrisch Freischalten
- 2. Sichern gegen Wiedereinschalten
- 3. Feststellen der Spannungsfreiheit
- 4. Erden und kurzschließen
- Abdecken/Abschranken benachbarter unter Spannung stehende Teile
- Schutzkreise unterbrechen (Förderer und benachbarte Maschinen)

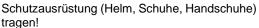
GEFAHR

Lebensgefahr durch Stromschlag

Es bestehen Gefahren, durch elektrische Restenergie in Kabeln und elektrischen Einrichtungen nachdem die Stromzufuhr getrennt wurde.

Fördersystem bei Störungen elektrisch freischalten und gegen unabsichtliches und unbefugtes Wiedereinschalten sichern! Warnschild anbringen!


Sicherstellen, dass die Störungsbeseitigung an elektrischer Ausrüstung nur von autorisiertem Fachpersonal durchgeführt wird!


Hersteller bei nicht selbst zu behebenden Störungen kontaktieren!

WARNUNG

Verletzungsgefahr durch Restenergien

Wartungs-, Instandhaltungsmaßnahmen und Reparaturen dürfen ausschließlich durch geschultes oder eingewiesenes Fachpersonal durchgeführt werden!

WARNUNG

Verletzungsgefahr bei Arbeiten über Körperhöhe

Es besteht Absturzgefahr bei Arbeiten an höher gelegenen Stellen der Fördersysteme.

Sicherheitsgerechte Aufstiegshilfen und Arbeitsbühnen verwenden! Keine Maschinenteile als Aufstiegshilfen benutzen!

Hinweis

Wartungsaufgaben können auch vom Maschinenbediener vorgenommen werden, wenn dieser eine Schulung oder eine Unterweisung dafür erhalten hat. Dabei ist schriftlich festzuhalten, welche Eingriffe der Maschinenbediener vornehmen darf und für welche er den dafür bestimmten Fachmann verständigen muss.

Nachfolgend beschriebene Wartungsarbeiten sind grundsätzlich von Fachpersonal durchzuführen!

9.1 Reinigung des Fördersystems

WARNUNG

Verletzungsgefahr durch Reinigungsmittel

Durch Missachtung der Reinigungsanweisung des Herstellers kann es im Umgang mit Reinigungsmitteln zu Verletzungen und gesundheitlichen Beeinträchtigungen kommen.

Bei der Reinigung alle gültigen Umweltschutzvorschriften einhalten!

Bei der Reinigung mit flüchtigen Stoffen (z. B. Reinigungsbenzin) muss eine ausreichende Belüftung gewährleistet werden!

Niemals mit offenem Feuer an der Maschine oder im Zusammenhang mit hochentzündlichen Kaltreinigern hantieren!

Schutzbrille und Schutzhandschuhe tragen!

- Reinigen Sie die Maschine insbesondere bei starkem Schmutzanfall öfter und regelmäßig!
- Führen Sie Reinigungsarbeiten nur mit geeigneten Hilfsmitteln durch!
- Wischen Sie das F\u00f6rdersystem insbesondere den Riemen – mit einem feuchten Lappen ab, um Verschmutzungen zu entfernen!
- Entfernen Sie nach den Reinigungsarbeiten alle Hilfsmittel!
- Überprüfen Sie die Funktion des gereinigten Bereichs!

Wichtig

Darauf achten, dass Fette und andere Schadstoffe nicht in die Kanalisation gelangen!

Altöl und andere umweltschädliche Substanzen sammeln und fachgerecht entsorgen!

9.2 Verpacken von Maschinenteilen

- Beachten Sie folgende Hinweise zum Wiederverpacken von Maschinenteilen, wenn diese zur Reparatur geschickt werden müssen:
- Zum Verpacken der Maschinenteile ggf. Kartonagen und anderes Verpackungsmaterial (Stretchfolie) verwenden, so dass diese während des Transports nicht durch äußere Einflüsse beschädigt werden.
- Maschinenteile gegen unbeabsichtigtes Kippen und Instabilität während des Transports sichern.

9.3 Wartungshinweise

Wichtig

Für die nachfolgend beschriebenen Wartungsarbeiten sind die vorbereitenden Arbeiten unbedingt im Vorfeld durchzuführen und sicherzustellen.

Die Wartungsintervalle sind abhängig von den Einsatzbedingungen und der Einsatzumgebung. Der Betreiber des Fördersystems muss die Intervalle entsprechend der Verwendung anpassen und gegebenenfalls ergänzen! Im Zweifel ist Rücksprache mit dem Hersteller zu halten.

Intervall	Beschreibung der Wartungsarbeit
täglich	Riemenverlauf Führen Sie eine Sichtkontrolle des Riemenverlaufs (direkt nach dem Einschalten) durch! Der Riemen muss dabei komplett frei laufen. Läuft der Riemen nicht mittig auf der Antriebsrolle, ist dieses entsprechend nach zu justieren. Kontrollieren Sie visuell die Abnutzung und den Verschleiß des Riemens!
täglich	Äußere Schäden Führen Sie eine Sicht- und Funktionsprüfung auf äußere erkennbare Mängel und Schäden an den Komponenten des Fördersystems durch!
täglich	Elektrische Verkabelung/Verdrahtung Prüfen Sie die Stabilität und bewegungsgerechte Fixierung der elektrischen Verkabelung/ Verdrahtung! Fixieren Sie diese gegebenenfalls neu!
täglich	Standfestigkeit Prüfen Sie die Standfestigkeit des Fördersystems. Ziehen Sie gegebenenfalls die Befestigungsmittel nach!
täglich	Leichtgängigkeit bewegter Elemente Prüfen Sie die bewegten Elemente (Transferrollen, Umlenkwalzen) auf Leichtgängigkeit! Schmieren Sie diese gegebenenfalls neu ab!
täglich	Reinigung Reinigen Sie das Fördersystem von Schmutz- partikeln, Ablagerungen und ölverschmutzten Flächen!
täglich	Fester Sitz Zubehör Prüfen Sie Initiatoren, Lichttaster und Stopper auf festen Sitz! Fixieren Sie diese gegebenen- falls neu! Tauschen Sie defekte Bauteile aus!
täglich	Reinigung Zubehör Reinigen Sie Initiatoren, Lichttaster und Licht- schranken! Verwenden Sie kein ätzendes Reini- gungsmittel!
täglich	Fester Sitz Schutzabdeckungen Kontrollieren Sie die Schutzabdeckungen auf festen Sitz und auf Vorhandensein!
wöchentlich	Verschleiß Motoren Prüfen Sie den Verschleiß beim Motor! Tauschen Sie gegebenenfalls defekte Lager aus! Reinigen Sie die Kühlrippen!
monatlich	Riemenspannung

Prüfen Sie die Riemenspannung und alle Schraubverbindungen! Prüfen Sie Lager auf Geräuschentwicklung und Beschädigungen!

vierteljährlich	Elektrische Verkabelung/Verdrahtung Prüfen Sie Kabeleinführungen der Endschalter, Initiatoren, Steckverbinder, Klemmkästen und Kabel auf Bruch, Abrieb, Beschädigung und Verschmutzung! Erneuern Sie diese bei Bedarf!
vierteljährlich	Motor Führen Sie eine Sichtprüfung des Motors durch! Achten Sie auf Temperatur, Geräuschentwicklung und auf Ölverlust!
halbjährlich	Elektrische Verkabelung/Verdrahtung Führen Sie bei der Hauptstromeinspeisung und den Kabelanschlüssen des Schaltschrankes/- kastens eine Sichtprüfung durch! Tauschen Sie gegebenenfalls defekte Teile aus!
jährlich	Sicherheitskreis Führen Sie eine Sicht- und Funktionsprüfung des Sicherheitskreises durch! Dokumentieren Sie diese Prüfungen!
jährlich	Schaltschrank/Elektrische Bauteile Reinigen Sie das Schaltschrankgehäuse und die elektrischen Bauteile! Prüfen Sie die Schalt- unterlagen auf Vollständigkeit!
jährlich	Hinweisschilder und Warnsymbole Überprüfen Sie Hinweisschilder und Warnsym- bole! Erneuern Sie diese bei Bedarf!
4 Jahre	Elektrische Einrichtungen Lassen Sie mind. alle 4 Jahre eine Sachverständigenprüfung der elektrischen Einrichtungen des Fördersystems durchführen!

9.4 Beenden der Wartungsarbeiten

- Überprüfen Sie die Schutzleiterverbindungen auf festen Sitz!
- Vergewissern Sie sich, dass alle erforderlichen Arbeiten gemäß Wartungsplan durchgeführt wurden!
- Installieren Sie alle demontierten Bezeichnungsschilder nach dem Austausch von Kabeln, Leitungen und Betriebsmitteln neu!
- Ziehen Sie bei Wartungs- und Instandhaltungsarbeiten gelöste Schraubenverbindungen stets fest!
- Kontrollieren Sie das Vorhandensein aller Sicherheitsund Schutzvorkehrungen!
- Entfernen Sie nach Abschluss der Arbeiten Werkzeug, Schrauben, Hilfsmittel oder Gegenstände aus dem Wirkbereich des Fördersystems!
- Schließen Sie den Schaltschrank wieder und übergeben die Schlüssel dem Verantwortlichen!
- Führen Sie nach erfolgten Wartungs- und Reparaturarbeiten einen Funktionstest (Probelauf) durch!
- Übergeben Sie das Fördersystem dem Bedienpersonal!

WARNUNG

Wartung

Verletzungsgefahr durch unerwarteten Anlauf

Es bestehen Gefahren durch Einzug und Erfassen von Körperteilen und Kleidung bei unerwartetem Anlauf der Maschine (z. B. bei Wiederinbetriebnahme nach Störung oder Spannungsausfall).

Erhöhte Aufmerksamkeit ist bei Arbeiten mit entriegelten bzw. demontierten Schutzeinrichtungen geboten (z. B. bei Rüstung, Wartung, Störungsbeseitigung)!

10. Störungsbeseitigung

Sicherheitshinweise

Sicherheitshinweise im Kapitel 3, "Sicherheitshinweise" sind zu beachten!

Zusätzlich sind alle Sicherheitshinweise und -symbole an den Fördersystemen und der im Anhang befindlichen Herstellerdokumentationen beachten.

WARNUNG

Verletzungsgefahr durch menschliches Fehlverhalten oder fehlende Qualifikation

Es bestehen Gefahren durch menschliches Fehlverhalten bei auftretenden Störungen.

Das Analysieren und Beheben von Störungen darf nur von Fachpersonal durchgeführt werden, dass besonders geschult und mit der Maschine vertraut ist!

Bei immer wiederkehrenden Störungen ist unverzüglich Fachpersonal zu verständigen!

GEFAHR

Lebensgefahr durch Stromschlag

Es bestehen Gefahren, durch elektrische Restenergie in Kabeln und elektrischen Einrichtungen nachdem die Stromzufuhr getrennt wurde.

Fördersystem bei Störungen elektrisch freischalten und gegen unabsichtliches und unbefugtes Wiedereinschalten sichern! Warnschild anbringen!

Sicherstellen, dass die Störungsbeseitigung an elektrischer Ausrüstung nur von autorisiertem Fachpersonal durchgeführt wird!

Hersteller bei nicht selbst zu behebenden Störungen kontaktieren!

An den Fördersystemen können Störungen auftreten. Nachfolgend werden diese im Kapitel "Häufig gestellte Fragen (FAQ)" ab Seite 66 mit jeweiliger Störungsbehebung dargestellt.

Technische Hilfestellung

Für technische Hilfestellung bei auftretenden Störungen, die nicht selbst behoben werden können, ist der Hersteller der Fördersysteme zu kontaktieren!

10.1 Ablauf bei Betriebsstörungen

Bei Störungen am Fördersystem:

- Fördersystem außer Betrieb nehmen (Hauptschalter ausschalten)
- Fördersystem absichern
- 3. Warnschilder am Fördersystem anbringen
- 4. Störungsbeseitigung durch Fachpersonal
- 5. Wiederinbetriebnahme mit Probelauf
- 6. Übergabe an das Bedienpersonal

WARNUNG

Verletzungsgefahr bei Wiederinbetriebnahme nach Störungsbeseitigung

Die Position beweglicher Komponenten ist undefiniert. Es bestehen Gefahren durch plötzliches Ingangsetzung der Maschinenkomponenten und sich lösende Restenergie.

Sicherheitseinrichtungen kontrollieren! Fördersystem erst wieder in Betrieb nehmen, wenn die Störung behoben und ein Funktionstest vorgenommen wurde!

10.2 Störungen beheben

- Führen Sie vor Beginn der Arbeiten an dem Förderer folgende Sicherheitsvorkehrungen in der angegebenen Reihenfolge aus!
- 1. Elektrisch Freischalten
- Sichern gegen Wiedereinschalten
- 3. Feststellen der Spannungsfreiheit
- 4. Erden und kurzschließen
- Abdecken/Abschranken benachbarter unter Spannung stehende Teile
- Schutzkreise unterbrechen (Förderer und benachbarte Maschinen)
- 7. Störung beheben

10.3 Häufig gestellte Fragen (FAQ)

Riemen verläuft

Bitte prüfen Sie den möglichen Grund, wie im Folgenden beschrieben.

- Fördersystem auf Verbiegung oder Verdrehung des Aluminiumprofils oder des Gehäuses prüfen.
- 2. Riemenspannung prüfen (eventuell lockerer Riemen).
- Riemenscheibe oder Spann- und Führungsrolle auf Fremdmaterial prüfen.

Möglicherweise tritt anfangs eine Mäandrierung auf, die jedoch nach einer bestimmten Betriebszeit des Riemens aufhört.

Riemen wandert auf eine Seite

Bitte prüfen Sie den möglichen Grund, wie im Folgenden beschrieben.

- Tritt möglicherweise aufgrund eines verbogenen oder tordierten des Aluminiumprofils bzw. Gehäuses auf.
- Der Riemen wandert möglicherweise auf eine Seite, wenn die Ladung ungleichmäßig verteilt ist.

Riemenbewegung wird langsamer

Bitte prüfen Sie den möglichen Grund, wie im Folgenden beschrieben.

- Prüfen Sie auf eventuell vorhandenen Staub und Schmutz auf dem Antriebsbereich (Riemenscheibe/Spann- und Führungsrolle).
- Der Riemen ist möglicherweise abgenutzt. Tauschen Sie den Riemen aus.

Schwingungen und Geräusche treten auf

Bitte prüfen Sie den möglichen Grund, wie im Folgenden beschrieben.

- Möglicherweise ist der Synchronriemen zu locker oder zu fest angezogen.
- Der Riemen ist möglicherweise abgenutzt. Wenn die Rückseite abgenutzt ist, den Riemen austauschen.
- Eventuell wurde der Riemen beschädigt oder es befinden sich Fremdkörper auf der Riemenscheibe oder den Spann- und Führungsrollen.

Der Förderer funktioniert nicht

Bitte prüfen Sie den möglichen Grund, wie im Folgenden beschrieben.

- Prüfen Sie, ob die Stromversorgung eingeschaltet ist (Stecker, Bedienfeld).
- Möglicherweise handelt es sich um eine Überlastung. Achten Sie darauf, dass die Last die Fördererkapazität nicht übersteigt.

EG-Konformitätserklärung

Wir, der Hersteller

MISUMI Corporation

1-6-5, Kudanminami, Chiyoda-ku, Tokyo 102-8583, Japan

und unser autorisierter Repräsentant in Europa

MISUMI Europa GmbH

Franklinstraße 61–63 60486 Frankfurt am Main

Deutschland

erklären eigenverantwortlich, dass die Produkte

SVKAE, SVKNE, SVKRE, CVGAE, CVGCE, CVGNE, CVGRE, CVGBE, CVGDE, CVGPE, CVGWE, CVSEE, CVSFE, CVSXE, CVSYE, CVSFAE, CVSFBE, CVSFC, CVSFDE, CVSJAE, CVSMAE, CVLPAE, CVMAE, CVMBE, CVSTCE, CVSTRE, CVGTAE, CVGTBE, CVGTNE, CVGTPE, CVSPAE, CVSSAE, CVDSAE, CVDSBE, CVSPCE, CVSAE, CVSBE, CVSNE, CVSPE, CVSCE, CVSDE, CVSRE, CVSTAE, CVSTBE, CVSTDE, CVSTPE, GVHAE, GVFAE, GVHNE, GVFNE, GVTSAE, GVTSNE, GVTWAUE, GVTWNUE, GVTWNSE

auf die sich diese Erklärung bezieht, mit den nachfolgenden Normen und Richtlinien übereinstimmen!

- EN620:2002 +A1:2010
- Maschinenrichtlinie 2006/42/EG (Niederspannungsrichtlinie 2014/35/EU enthalten)
- EMV-Richtlinie 2014/30/EU

Die betreffenden Produkte werden nach entsprechenden Qualitätskontrollen hergestellt und getestet.

SHINGO TAMAI

April 2023

SHINGO TAMAI

Hauptgeschäftsführer Leiter der Marketingabteilung, IM G

Unternehmenseinheit IM

EG-Einbauerklärung

Wir, der Hersteller

MISUMI Corporation

1-6-5, Kudanminami, Chiyoda-ku, Tokyo 102-8583, Japan

und unser autorisierter Repräsentant in Europa

MISUMI Europa GmbH

Franklinstraße 61–63 60486 Frankfurt am Main

Deutschland

erklären eigenverantwortlich, dass die Produkte (unvollständige Fördersysteme, d. h. ohne Antrieb)

SVKAE, SVKBE, SVKNE, SVKRE, CVGAE, CVGCE, CVGNE, CVGRE, CVGBE, CVGDE, CVGPE, CVGWE, CVSEE, CVSFE, CVSXE, CVSYE, CVSFAE, CVSFBE, CVSFCE, CVSFDE, CVSJAE, CVSMAE, CVLPAE, CVMAE, CVMBE, CVSTCE, CVSTRE, CVGTAE, CVGTBE, CVGTNE, CVGTPE, CVSPAE, CVSSAE, CVDSAE, CVDSBE, CVSPCE, CVSAE, CVSBE, CVSNE, CVSPE, CVSCE, CVSDE, CVSRE, CVSTAE, CVSTBE, CVSTDE, CVSTPE, GVHAE, GVFAE, GVHNE, GVFNE, GVTSAE, GVTSNE, GVTWAUE, GVTWNUE, GVTWNSE

auf die sich diese Erklärung bezieht, mit den nachfolgenden Normen und Richtlinien übereinstimmen!

- EN620:2002 +A1:2010 (mit Ausnahme der Anforderung für den Antrieb)
- Maschinenrichtlinie 2006/42/EG (mit Ausnahme der Anforderung für den Antrieb)

Die Inbetriebnahme des Produktes ist solange untersagt, bis festgestellt wurde, dass die Maschine allen grundlegenden Anforderungen der Richtlinie 2006/42/EG entspricht.

Die betreffenden Produkte werden nach entsprechenden Qualitätskontrollen hergestellt und getestet.

SHINGO TAMAI

April 2023

SHINGO TAMAI

Hauptgeschäftsführer Leiter der Marketingabteilung, IM G

Unternehmenseinheit IM