V Guide Systems - Overview

Metric Size 70° Type

V Guide Systems

Metric Size 70° Type Wheels and Bushings / Double Sided Tracks

Functions and Features

1. Bearing and V grove $\left(70^{\circ}\right)$ are integrated in a single unit. 2. System construction can be achieved by using only one Double Sided Track.
2. Sized in metric

Load Calculation

L = Load (N)
LS $=$ Thrust load applied to wheel (N)
$L R=$ Radial Load applied to wheel (N)
A, $B=$ Distance (mm)

When load applied between the wheels $L S 1=\frac{L \times B}{A+B}$ $\mathrm{LS}_{2}=\mathrm{L}-\mathrm{LS}_{1}$ (Ex.) $\mathrm{L}=500$ (N) $\mathrm{A}=40$ (mm) $B=60(\mathrm{~mm})$ $L S 1=\frac{500 \times 60}{40+60}=300(\mathrm{~N})$ $L S 2=500-300=200(\mathrm{~N})$	
When load applied outside the wheels $L S_{1}=\frac{L X A}{B}$ $L S_{2}=L+L S 1$ (EX.) $L=500$ (N) $A=60(m m)$ $\mathrm{B}=40(\mathrm{~mm})$ $L S 1=\frac{500 \times 60}{40}=750(\mathrm{~N})$ $L S 2=500+750=1250(\mathrm{~N})$	
When radial and thrust load are combined $L S_{1}=L S_{2}=\frac{L X A}{B}$ $L R 1=L+L S_{1}$ LR2 $=$ LS2 (EX .) $L=500(\mathrm{~N}) A=60(\mathrm{~mm})$ $B=100(\mathrm{~mm})$ $L S 1=L S 2=\frac{500 \times 60}{100}=300(\mathrm{~N})$ $L R_{1}=500+300=800(\mathrm{~N})$	

System Assembly and Adjustments

1. First, assemble the components loosely with a minimum load
2. Fully tighten the fixed wheels
3. Next, tighten mounting nuts of adjusting wheel tentatively in order to adjust them.
4. Turn the hex nut in the center of Adjusting Wheel gradually by wrench to set the minimum preload and do not leave a gap between each pair of wheels facing each other
Check if proper preload is applied by turning the wheels with fingers while track is fixed and carriage plate remains still. Atthough a slight resistance may be felt, the wheels should turn freels under a proper preload. Excessive preload results in a shorter product life.
. Make adjustments and test all the adjustable wheels in the above manner, and fully tighten the whee nuts to the speciried torque.
5. After adjustment, check again in the same process as 5 to make sure of proper preload.

Load Factor Calculation

Calculate the load factor (LF) of the wheel to which the biggest load is applied. select the wheel whose load factor is less than
$L F=\frac{L S}{L S}$ max $+\frac{L R}{L R}$
LF $=$ Load Factor
S $=$ Thrust Load applied to wheel
$1 . S$ max $=$ Maximum Thrust Load applied to wheel
$=$ = Radial Load and
LR $=$ Radiai Load applied to wheel
LR max $=$ Maximum Racial Load applied to wheel

Part Number	W/o Lubrication	With Lubrication

Type	No.	LSmax(N)	LRmax(N)	LSmax(N)	
MVH	12	22.5	45	60	120
	25	100	200	320	600

Life Calculation

Calculate life of the system and confirm the validation of size selection.

<Calculation Example>
When using MVH-34C under the conditions of $\mathrm{LS}=100(\mathrm{~N}), \mathrm{LR}=200$ (N) and $\mathrm{Af}=0.7$ Load Factor LF $=\frac{100}{800}+\frac{200}{1400}=0.268 \leq 1.0$

Life $(\mathrm{km})=\frac{100}{(0.268)^{3}} \times 0.7=3637 \mathrm{~km}$

(3) For L dimensions, please erefer to the picie list.

YTH

