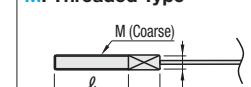

Link Cable / Wire

CWP Link Cable



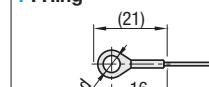
CWW Link Wire

Wire End Selection

M: Threaded Type

No.	M	Pitch (F)	l	(W)
03	3	0.5	20	10
M 04	4	0.7	25	15
05	5	0.8	30	20

M Material: EN 1.4305 Equiv.
Included Nut, 1 pc. (JIS Class 3): EN 1.4301 Equiv.


N: Tapped Type

No.	M	Pitch (F)	l	B
03	3	0.5	20	10
N 04	4	0.7	25	15
05	5	0.8	30	20

M Material: EN 1.4305 Equiv.
Included Nut, 1 pc. (JIS Class 3): EN 1.4301 Equiv.

P: Ring

No.	d (internal)
03	3.2
P 04	4.2
05	5.2

M Material: EN 1.4305 Equiv.
Included Nut, 1 pc. (JIS Class 3): EN 1.4301 Equiv.

Link Cable

Part Number	Wire End No. Selection			S (Stroke) 10 mm Increment	L (Outer Length) 10 mm Increment	Wire Dia. (Ø)	Outer Diameter (Ø)	Outer End M (Coarse)	Included Nut B	Max. Operating Force N (kgf)	Minimum Bending Radius R (kgf)	
	Type	No.	Left	Right								
CWP	0.7	M 03	M 03	M 03	40~500	200~3000	0.75	5	M5	8	3.2	294[30]
	1.2	M 04	M 04	M 04	40~500	200~3000	1.2	5	M6	10	3.6	706[72]
	2.0	M 05	M 05	P 05	40~500	300~3000	2.0	6	M8	13	5	1878[192]

Link Wire

Part Number	Wire End No. Selection			L 10mm Increment	Wire Dia. (Ø)	Max. Operating Force N (kgf)	Minimum Bending Radius R	
	Type	No.	Left	Right				
CWW	0.7	M 03	M 03	M 03	40~5000	0.75	294[30]	20
	1.2	M 04	M 04	M 04	40~5000	1.2	706[72]	32
	2.0	M 05	M 05	P 05	40~5000	2.0	1878[192]	52

 Ordering Example: Part Number - Wire End - Stroke - Outer Length Wire Length
CWP0.7 - M03 - N03 - S40 - 1000
CWW1.2 - P04 - N04 - 1200

Alterations Ordering Example: Part Number - Wire End - Stroke - Outer Length - (BL-WBL)
CWP0.7 - M03 - N04 - S40 - 1000 - BL

Link Cable

Part Number	Wire End	Unit Price		
		L-500	-1000	-2000
CWP	PP			
	MP NP			
	MM MN NN			
CWW	PP			
	MP NP			
	MM MN NN			
CWP	PP			
	MP NP			
	MM MN NN			
CWW	PP			
	MP NP			
	MM MN NN			

Link Wire

Part Number	Wire End	Unit Price		
		L-500	-1000	-2000
0.7	PP			
0.7	MP NP			
0.7	MM MN NN			
1.2	PP			
1.2	MP NP			
1.2	MM MN NN			
2.0	PP			
2.0	MP NP			
2.0	MM MN NN			

Features of Link Cable

• Generally called PULL cable - a control cable that can perform complex power transmissions to the device installed far away by transmitting the pull force and displacement, using together with various connecting parts.

• Originally designed as the internal components of the automobiles - the power transmission component with the characteristics of "lightweight", "direct feel", "assembly", "vibration damping & sound proofing", and "safety".

<Flexible Design/Assembly> Without requiring the joint mechanism of the intermediate area, all you need is a gap in the outer diameter to connect the drive component and the operating unit three-dimensionally.

<Quake Resistance & Sound Proofing> Less rigid compared to the mechanical rod type and excels in sound dampening and vibration insulation.

<Space Saving> Flexible placement of drive components and operating unit allows you to make the unit compact.

<Reliability> Highly reliable as you can directly connect the operating unit and the drive components mechanically.

<Economical> Simpler structure compared to the other connecting mechanism. Fewer assembly tasks required and easy to wire.

Cautions on Designing/Using Link Cables

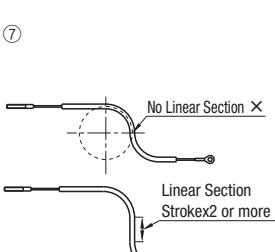
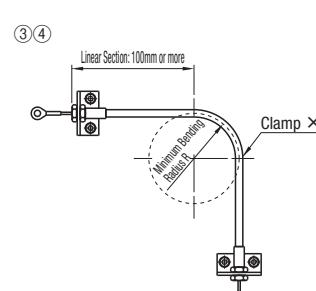
① Use it within the load capacity of the maximum operating force.

② To avoid loosening, make sure to secure the area where the outer tube is attached. (Depending on your situation, order the alterations of the mounting bracket and use them accordingly.)

③ When you bend the cable for wiring, keep at least 100 mm straight to avoid creating a bending angle on the threaded area of both ends of the outer tube.

Do not clamp the bending area of the outer tube. (It could degrade the durability.)

④ Wire the cable to make the bending angle to be above the minimum bending radius R.

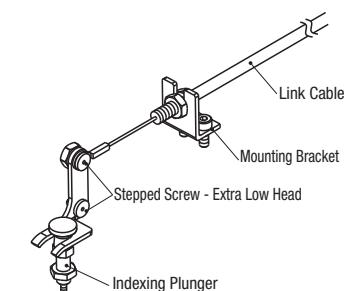


⑤ Keep the bending minimum when you wire the cable.

⑥ If you have to extend the wiring, secure the outer tube where appropriate to prevent the outer tube from moving broadly during operations.

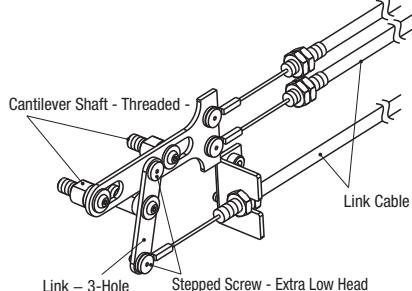
⑦ To wire the cable in S-shaped form, provide a linear part that is at least twice the stroke. Failure to do so will degrade the operating force by half.

⑧ Cautions on Using Link Wire

If you use the wire with a pulley, the outer diameter of the pulley must be longer than those shown in the below table. Durability varies depending on the operation speed or the load weight.



No.	Wire Dia.	Pulley Dia.
0.7	0.75	20
1.2	1.2	32
2.0	2.0	52



Example

Remote Controlling of Indexing Plunger

1-Input / 2-Output Mechanism

