Linear shafts / material selectable / treatment selectable / double stepped on one side / external thread / internal thread / undercut (Part Numbers - CAD Download)

Linear shafts / material selectable / treatment selectable / double stepped on one side / external thread / internal thread / undercut

Click on this image to zoom in.

Click on this image to zoom in.

  • Linear shafts / material selectable / treatment selectable / double stepped on one side / external thread / internal thread / undercut
  • Linear shafts / material selectable / treatment selectable / double stepped on one side / external thread / internal thread / undercut
  • Order quantities extended (D-JIT)

(i)Remark

  • SFAY has been localized according to European needs and requirements. Please have a look on the EU version SFAYEU. SFAYEU is available in EN 1.1213 (Cf53) and h6 / h7.

Data sheet

Unit еxample related to this product

Part Number

Once your search is narrowed to one product,
the corresponding part number is displayed here.

Back to Linear Shaft Category

Technical Drawing - Linear Shafts

 

One End Stepped and Threaded One End Tapped:Related Image

 

Basic Properties (e.g. material, hardness, coating, tolerance) - Linear Shafts

 

TypeMaterialHardness
Surface Treatment
D Tol. g6D Tol. h5D Tol. f8
SFAYSFUY-EN 1.3505 Equiv.Effective Hardened Depth of Induction Hardening >>P.112
EN 1.3505 Equiv. 58HRC~
EN 1.4037 Equiv. 56HRC~
-
SSFAYSSFUY-EN 1.4037 Equiv.
PSFAYPSFUY-EN 1.3505 Equiv.Hard Chrome Plating
Plating Hardness: HV750 ~
Plating Thickness: 5µ or More ~
PSSFAYPSSFUY-EN 1.4037 Equiv.
RSFAY--EN 1.3505 Equiv.LTBC Plating
--PSFGYEN 1.1191 Equiv.-Hard Chrome Plating
Plating Hardness: HV750 ~
Plating Thickness: 10µ or More ~
--PSSFGYEN 1.4301 Equiv.

 

Further specifications can be found under the tab More Information.

 

Composition of a Product Code - Linear Shafts

 

Part Number-L-F-B-P-M-N
SFAY20-277-F25-B12-P10-M8-N12

 

Alterations - Linear Shafts


One End Stepped and Threaded One End Tapped:Related Image

You find further options in detail under Option Overview.

 

Part Number:  

    3D preview is not available, because the part number has not yet been determined.

  • In order to open the 3D preview, the part number must be fixed.
Loading...
Part Number
SSFUY30-[25-1480/1]-F[10-203/1]-B[8-120/1]-P[9-29/1]-MMC[8,​10,​12,​15,​17,​20,​25]-N[6,​8,​10,​12,​16,​20]
SSFUY30-[25-1480/1]-F[10-203/1]-B[8-120/1]-P[9-29/1]-MMC[8,​10,​12,​15,​17,​20,​25]-ND[6,​8,​10,​12,​16,​20]
SSFUY30-[25-1480/1]-F[10-203/1]-B[8-120/1]-P[9-29/1]-MMC[8,​10,​12,​15,​17,​20,​25]-NSC[8,​10,​12,​14,​18]
SSFUY30-[25-1480/1]-F[10-203/1]-B[8-120/1]-P[9-29/1]-MMS[10,​12,​14,​18]-N[6,​8,​10,​12,​16,​20]
SSFUY30-[25-1480/1]-F[10-203/1]-B[8-120/1]-P[9-29/1]-MMS[10,​12,​14,​18]-ND[6,​8,​10,​12,​16,​20]
SSFUY30-[25-1480/1]-F[10-203/1]-B[8-120/1]-P[9-29/1]-MMS[10,​12,​14,​18]-NSC[8,​10,​12,​14,​18]
SSFUY35-[25-1460/1]-F[20-238/1]-B[10-210/1]-P[11-34/1]-M[10,​12,​16,​20,​24,​30]-N[8,​10,​12,​16,​20,​24]
SSFUY35-[25-1460/1]-F[20-238/1]-B[10-210/1]-P[11-34/1]-M[10,​12,​16,​20,​24,​30]-NSC[8,​10,​12,​14,​18]
SSFUY35-[25-1460/1]-F[20-238/1]-B[10-210/1]-P[11-34/1]-MMC[10,​12,​15,​17,​20,​25,​30]-N[8,​10,​12,​16,​20,​24]
SSFUY35-[25-1460/1]-F[20-238/1]-B[10-210/1]-P[11-34/1]-MMC[10,​12,​15,​17,​20,​25,​30]-NSC[8,​10,​12,​14,​18]
SSFUY35-[25-1460/1]-F[20-238/1]-B[10-210/1]-P[11-34/1]-MMS[10,​12,​14,​18]-N[8,​10,​12,​16,​20,​24]
SSFUY35-[25-1460/1]-F[20-238/1]-B[10-210/1]-P[11-34/1]-MMS[10,​12,​14,​18]-NSC[8,​10,​12,​14,​18]
SSFUY40-[25-1460/1]-F[20-273/1]-B[12-210/1]-P[13-39/1]-M[12,​16,​20,​24,​30]-N[10,​12,​16,​20,​24,​30]
SSFUY40-[25-1460/1]-F[20-273/1]-B[12-210/1]-P[13-39/1]-M[12,​16,​20,​24,​30]-NSC[10,​12,​14,​18]
SSFUY40-[25-1460/1]-F[20-273/1]-B[12-210/1]-P[13-39/1]-MMC[12,​15,​17,​20,​25,​30]-N[10,​12,​16,​20,​24,​30]
SSFUY40-[25-1460/1]-F[20-273/1]-B[12-210/1]-P[13-39/1]-MMC[12,​15,​17,​20,​25,​30]-NSC[10,​12,​14,​18]
SSFUY40-[25-1460/1]-F[20-273/1]-B[12-210/1]-P[13-39/1]-MMS[12,​14,​18]-N[10,​12,​16,​20,​24,​30]
SSFUY40-[25-1460/1]-F[20-273/1]-B[12-210/1]-P[13-39/1]-MMS[12,​14,​18]-NSC[10,​12,​14,​18]
SSFUY50-[25-1460/1]-F[20-343/1]-B[16-210/1]-P[17-49/1]-M[16,​20,​24,​30]-N[12,​16,​20,​24,​30]
SSFUY50-[25-1460/1]-F[20-343/1]-B[16-210/1]-P[17-49/1]-M[16,​20,​24,​30]-NSC[14,​18]
SSFUY50-[25-1460/1]-F[20-343/1]-B[16-210/1]-P[17-49/1]-MMC[15,​17,​20,​25,​30]-N[12,​16,​20,​24,​30]
SSFUY50-[25-1460/1]-F[20-343/1]-B[16-210/1]-P[17-49/1]-MMC[15,​17,​20,​25,​30]-NSC[14,​18]
SSFUY50-[25-1460/1]-F[20-343/1]-B[16-210/1]-P[17-49/1]-MMS[14,​18]-N[12,​16,​20,​24,​30]
SSFUY50-[25-1460/1]-F[20-343/1]-B[16-210/1]-P[17-49/1]-MMS[14,​18]-NSC[14,​18]
Part Number
Standard Unit Price
Minimum order quantityVolume Discount
Standard
Shipping Days
?
RoHS[D] Diameter (Shaft)
(mm)
[L] Length (Shaft)
(mm)
Material Heat Treatment Surface Treatment ISO Tolerance Hardness [B] Length (thread)
(mm)
[NSC] Size (fine thread - depth 2xN)
(mm)
[MMC] Size (fine thread)
(mm)
[MMS] Size (fine thread)
(mm)
[ND] Size (thread - depth 3xN)
(mm)
[F] Length (stud - offset - front side)
(mm)
[P] Diameter (stepped - front side)
(mm)
[N] Size (thread - depth 2xN)
(mm)
[M] Size (thread - depth 2xM)
(mm)

-

1 4 Days 103025 ~ 1480[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)8 ~ 120-8 ~ 25--10 ~ 2039 ~ 296 ~ 20-

-

1 4 Days 103025 ~ 1480[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)8 ~ 120-8 ~ 25-6 ~ 2010 ~ 2039 ~ 29--

-

1 4 Days 103025 ~ 1480[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)8 ~ 1208 ~ 188 ~ 25--10 ~ 2039 ~ 29--

-

1 4 Days 103025 ~ 1480[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)8 ~ 120--10 ~ 18-10 ~ 2039 ~ 296 ~ 20-

-

1 4 Days 103025 ~ 1480[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)8 ~ 120--10 ~ 186 ~ 2010 ~ 2039 ~ 29--

-

1 4 Days 103025 ~ 1480[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)8 ~ 1208 ~ 18-10 ~ 18-10 ~ 2039 ~ 29--

-

1 7 Days 103525 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)10 ~ 210----20 ~ 23811 ~ 348 ~ 2410 ~ 30

-

1 7 Days 103525 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)10 ~ 2108 ~ 18---20 ~ 23811 ~ 34-10 ~ 30

-

1 7 Days 103525 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)10 ~ 210-10 ~ 30--20 ~ 23811 ~ 348 ~ 24-

-

1 7 Days 103525 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)10 ~ 2108 ~ 1810 ~ 30--20 ~ 23811 ~ 34--

-

1 7 Days 103525 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)10 ~ 210--10 ~ 18-20 ~ 23811 ~ 348 ~ 24-

-

1 7 Days 103525 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)10 ~ 2108 ~ 18-10 ~ 18-20 ~ 23811 ~ 34--

-

1 7 Days 104025 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)12 ~ 210----20 ~ 27313 ~ 3910 ~ 3012 ~ 30

-

1 7 Days 104025 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)12 ~ 21010 ~ 18---20 ~ 27313 ~ 39-12 ~ 30

-

1 7 Days 104025 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)12 ~ 210-12 ~ 30--20 ~ 27313 ~ 3910 ~ 30-

-

1 7 Days 104025 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)12 ~ 21010 ~ 1812 ~ 30--20 ~ 27313 ~ 39--

-

1 7 Days 104025 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)12 ~ 210--12 ~ 18-20 ~ 27313 ~ 3910 ~ 30-

-

1 7 Days 104025 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)12 ~ 21010 ~ 18-12 ~ 18-20 ~ 27313 ~ 39--

-

1 7 Days 105025 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)16 ~ 210----20 ~ 34317 ~ 4912 ~ 3016 ~ 30

-

1 7 Days 105025 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)16 ~ 21014 ~ 18---20 ~ 34317 ~ 49-16 ~ 30

-

1 7 Days 105025 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)16 ~ 210-15 ~ 30--20 ~ 34317 ~ 4912 ~ 30-

-

1 7 Days 105025 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)16 ~ 21014 ~ 1815 ~ 30--20 ~ 34317 ~ 49--

-

1 7 Days 105025 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)16 ~ 210--14 ~ 18-20 ~ 34317 ~ 4912 ~ 30-

-

1 7 Days 105025 ~ 1460[Stainless Steel (martensitique)] EN 1.4037 Equiv.Induction HardenedNo Treatmenth5Induction Hardening (56HRC~)16 ~ 21014 ~ 18-14 ~ 18-20 ~ 34317 ~ 49--

Loading...

Back to Linear Shaft Category

Technical Drawing - Linear Shafts

 

One End Stepped and Threaded One End Tapped:Related Image

 

Specification Tables - Linear Shafts

 

Overview of the shaft designs as PDF

 

Part Number1mm IncrementM (Coarse)
Selection
N (Coarse)
Selection
(Y)Max.RC
TypeDLFBP
(D Tolerance g6)
SFAY
SSFAY

PSFAY
PSSFAY
RSFAY

(D≤30, L≤500)
(D Tolerance f8)
PSFGY
P
SSFGY
(D Tolerance h5)
SFUY
SSFUY
PSFUY
PSSFUY




 
825~ 79010≤F≤Px5Pitchx3+(g)≤B≤Mx3M<P<D6       345        8000.3 or Less0.5 or Less
1025~ 79068      3456       800
1225~ 9906810      4568      1000
1325~ 9906810      4568      1000
1525~ 990681012     456810     1000
1625~1190681012     456810     1200
1825~119068101216    45681012    1200
2025~119068101216    45681012    12001.0 or Less
2525~1190 810121620   4568101216   1200
3025~1490 81012162024    6810121620  1500
3525~148020≤F≤Px5  101216202430    81012162024 15000.5 or Less
4040~1480   1216202430     1012162024301500
5050~1480    16202430      12162024301500
 
D Tol.
Dg6h5f8
8-0.005
-0.014
0
-0.006
-0.013
-0.035
10
12-0.006
-0.017
0
-0.008
-0.016
-0.043
13
15
16
18
20-0.007
-0.020
0
-0.009
-0.020
-0.053
25
30
35-0.009
-0.025
0
-0.011
-0.025
-0.064
40
50
 
Coarse Thread Undercut Dimension
MPitchMC(g)
61.04.42
81.256.03
101.57.7
121.759.44
162.013.0
202.516.45
243.019.6
303.525.0
 
Undercut Dimensions for Fine Threads
MMCPitchMC(g)
60.754.82
81.06.4
108.4
1210.4
1513.4
1715.4
2018.4
251.522.73
3027.7
 
Undercut Dimensions for Fine Threads
MMSPitchMC(g)
101.2583
121.59.7
1411.7
1815.7
Overall length L requires Nx3≤L. F-B≥2 is required.

 

Alterations - Linear Shafts


One End Stepped and Threaded One End Tapped:Related Image

You find further options in detail under Option Overview.

Basic information

Basic Shape Solid, One End Stepped Shaft end Shape (Left) External thread Shaft end Shape (Right) Internal thread
Shaft end Perpendicularity 0.2

Frequently Asked Questions (FAQ)

Question:

What is the difference between a hollow shaft and a solid shaft?

Answer:

With the same size, there are three differences between a hollow shaft and a solid shaft. Hollow shafts weigh less. The inner cavity of a hollow shaft is suitable for use as a channel (cable channel). Solid shafts are a bit more rigid (higher resistance torque).

Question:

What is the minimum order of linear shafts from MISUMI?

Answer:

MISUMI supplies solid shafts, hollow shafts and precision shafts starting at a lot size of 1. This also applies to all other items in our product range.

Question:

Noises and vibrations occur with a linear shaft. In addition, there are jerky movements. What could cause this?

Answer:

In general, it may be caused if the steel shaft is not properly lubricated. In addition, an incorrectly selected diameter tolerance of the linear shafts may also make the cycle of motion more difficult. When using MISUMI linear ball bearings, a g6 shaft tolerance is recommended (tolerance recommendations may vary depending on the manufacturer).

Question:

What is the strength of a solid shaft?

Answer:

The strength of a linear shaft, although it is a solid shaft, hollow shaft or precision shaft, should always be selected in consideration of the strength of the material used.

Question:

What are the advantages of a hollow shaft over a solid shaft?

Answer:

There are various advantages of a hollow shaft compared to a solid shaft. If the outer diameter is the same, the weight of a hollow shaft is lower than that of a solid shaft. However, the cavity of the hollow shaft can also be used as a cable channel or for cooling. A hollow shaft is at the same weight or with the same cross-sectional area more rigid than a solid shaft, because the outer diameter is larger. However, the question that needs to be answered is whether the advantage is a greater room utilization or less weight.

Question:

Is a hollow shaft stiffer than a solid shaft?

Answer:

The rigidity of a hollow shaft is slightly lower with the same outer diameter than that of a solid shaft. However, with the same cross-sectional area or with the same weight, the stiffness of a hollow shaft is higher than that of a solid shaft, because the outer diameter of the hollow shaft is larger.

Question:

Why do I have running grooves on the linear shafts of my 3D printers?

Answer:

The running grooves on the linear shaft may have been created, for example, by using a linear ball bearing. To prevent grooves from forming on a steel shaft, it should be hardened and hard chromium plated, making it more durable and resistant to the wear and tear from ball bearings.

Question:

How do the flexure properties of hollow shafts and solid shafts differ?

Answer:

With an equally large outer diameter, a solid shaft has better flexure properties than an equally large hollow shaft. However, the solid shaft is not much stiffer than a hollow shaft with the same outer diameter, since the outer sections mainly carry the load. Hollow shafts with the same cross-sectional area are more rigid than solid shafts, because they have a larger outer diameter. Therefore, there is physically more material in the outer sections for the bending, which bears the loads.

Question:

I need a lacquered or matted shaft because reflections cause problems with the optics. Does MISUMI have something like that?

Answer:

MISUMI LTBC-coated linear shafts are an alternative to painted or matted steel shafts. The LTBC coating is low-reflection and has the same effect as painted and matte shafts. In addition, LTBC-coated linear shafts are more resistant to wear and tear and flaking. You can find further information on LTBC coating here .

Question:

It has been shown that a hollow shaft is stronger than a solid shaft made of the same material. Why?

Answer:

A hollow shaft with the same outer dimensions is principally not stronger than a solid shaft. However, a hollow shaft per weight unit is stronger.

Show more FAQ Close

Complementary Products

MISUMI Unit еxample related to this product

Tech Support