Linear shafts / internal thread on one side / spanner flat

Linear shafts / internal thread on one side / spanner flat

Click on this image to zoom in.

Click on this image to zoom in.

Part Number

Once your search is narrowed to one product,
the corresponding part number is displayed here.

Back to Linear Shaft Category

Technical Drawing - Linear Shafts

 

Precision/One End Tapped/One End Tapped with Wrench Flats:Related Image

 

Basic Properties (e.g. material, hardness, coating, tolerance) - Linear Shafts

 

TypeMaterialHardnessSurface Treatment
W/o Wrench FlatsWith Wrench FlatsD Tol.
VFJTVFJCg6EN 1.3505 Equiv.Induction Hardened
Effective Hardened Depth >>P.112
EN 1.3505 Equiv. 58HRC~
EN 1.4037 Equiv. 56HRC~
-
VSFJTVSFJCEN 1.4037 Equiv.
VPFJTVPFJCEN 1.3505 Equiv.Hard Chrome Plating
Plating Hardness HV750 ~
Plating Thickness: 5µ or More
VPSFJTVPSFJCEN 1.4037 Equiv.
VRJTVRJCEN 1.3505 Equiv.LTBC Plating

 

Further specifications can be found under the tab More Information.

 

Composition of a Product Code - Linear Shafts

 

Part Number-L-M-SC
VFJT20
VFJC20
-
-
100
100
-
-
M8
M8
-
-

SC10

 

Alterations - Linear Shafts


Precision/One End Tapped/One End Tapped with Wrench Flats:Related Image

You find further options in detail under Option Overview.

 

Part Number:  

    3D preview is not available, because the part number has not yet been determined.

  • In order to open the 3D preview, the part number must be fixed.
Loading...
Part Number
VFJC6-[20-350/1]-M3-SC[0-292/1]
VFJC8-[20-350/1]-M[3,​4,​5]-SC[0-292/1]
VFJC10-[20-400/1]-M[3,​4,​5,​6]-SC[0-342/1]
VFJC10-[20-400/1]-MD6-SC[0-342/1]
VFJC12-[20-400/1]-M[4,​5,​6,​8]-SC[0-340/1]
VFJC12-[20-400/1]-MD[6,​8]-SC[0-340/1]
VFJC12-[20-400/1]-MSC8-SC[0-340/1]
VFJC13-[20-400/1]-M[4,​5,​6,​8]-SC[0-340/1]
VFJC13-[20-400/1]-MD[6,​8]-SC[0-340/1]
VFJC13-[20-400/1]-MSC8-SC[0-340/1]
VFJC15-[20-400/1]-M[4,​5,​6,​8,​10]-SC[0-340/1]
VFJC15-[20-400/1]-MD[6,​8,​10]-SC[0-340/1]
VFJC15-[20-400/1]-MSC[8,​10]-SC[0-340/1]
VFJC16-[20-400/1]-M[4,​5,​6,​8,​10]-SC[0-390/1]
VFJC16-[20-400/1]-MD[6,​8,​10]-SC[0-390/1]
VFJC16-[20-400/1]-MSC[8,​10]-SC[0-390/1]
VFJC18-[20-400/1]-M[4,​5,​6,​8,​10,​12]-SC[0-340/1]
VFJC18-[20-400/1]-MD[6,​8,​10,​12]-SC[0-340/1]
VFJC18-[20-400/1]-MSC[8,​10,​12]-SC[0-340/1]
VFJC20-[25-500/1]-M[4,​5,​6,​8,​10,​12]-SC[0-440/1]
VFJC20-[25-500/1]-MD[6,​8,​10,​12]-SC[0-440/1]
VFJC20-[25-500/1]-MSC[8,​10,​12,​14]-SC[0-440/1]
VFJC25-[25-500/1]-M[4,​5,​6,​8,​10,​12,​16]-SC[0-440/1]
VFJC25-[25-500/1]-MD[6,​8,​10,​12,​16]-SC[0-440/1]
VFJC25-[25-500/1]-MSC[8,​10,​12,​14,​18]-SC[0-440/1]
VFJC30-[25-500/1]-M[6,​8,​10,​12,​16,​20]-SC[0-435/1]
VFJC30-[25-500/1]-MD[6,​8,​10,​12,​16,​20]-SC[0-435/1]
VFJC30-[25-500/1]-MSC[8,​10,​12,​14,​18]-SC[0-435/1]
VFJT4-[25-200/1]-M2
VFJT5-[25-300/1]-M[2.6,​3]
VFJT6-[20-350/1]-M3
VFJT8-[20-350/1]-M[3,​4,​5]
VFJT10-[20-400/1]-M[3,​4,​5,​6]
VFJT10-[20-400/1]-MD6
VFJT12-[20-400/1]-M[4,​5,​6,​8]
VFJT12-[20-400/1]-MD[6,​8]
VFJT12-[20-400/1]-MSC8
VFJT13-[20-400/1]-M[4,​5,​6,​8]
VFJT13-[20-400/1]-MD[6,​8]
VFJT13-[20-400/1]-MSC8
VFJT15-[20-400/1]-M[4,​5,​6,​8,​10]
VFJT15-[20-400/1]-MD[6,​8,​10]
VFJT15-[20-400/1]-MSC[8,​10]
VFJT16-[20-400/1]-M[4,​5,​6,​8,​10]
VFJT16-[20-400/1]-MD[6,​8,​10]
VFJT16-[20-400/1]-MSC[8,​10]
VFJT18-[20-400/1]-M[4,​5,​6,​8,​10,​12]
VFJT18-[20-400/1]-MD[6,​8,​10,​12]
VFJT18-[20-400/1]-MSC[8,​10,​12]
VFJT20-[25-500/1]-M[4,​5,​6,​8,​10,​12]
VFJT20-[25-500/1]-MD[6,​8,​10,​12]
VFJT20-[25-500/1]-MSC[8,​10,​12,​14]
VFJT25-[25-500/1]-M[4,​5,​6,​8,​10,​12,​16]
VFJT25-[25-500/1]-MD[6,​8,​10,​12,​16]
VFJT25-[25-500/1]-MSC[8,​10,​12,​14,​18]
VFJT30-[25-500/1]-M[6,​8,​10,​12,​16,​20]
VFJT30-[25-500/1]-MD[6,​8,​10,​12,​16,​20]
VFJT30-[25-500/1]-MSC[8,​10,​12,​14,​18]
VPFJC6-[20-350/1]-M3-SC[0-292/1]
VPFJC8-[20-350/1]-M[3,​4,​5]-SC[0-292/1]
Part Number
Standard Unit Price
Minimum order quantityVolume Discount
Standard
Shipping Days
?
RoHS[D] Diameter (Shaft)
(mm)
[L] Length (Shaft)
(mm)
Material Surface Treatment Hardness [SC] Distance (wrench flat)
(mm)
[MSC] Size (fine thread - depth 2xMSC)
(mm)
[MD] Size (thread - depth 3xM)
(mm)
[M] Size (thread - depth 2xM)
(mm)

-

1 10 Days 10620 ~ 350[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 292--3

-

1 10 Days 10820 ~ 350[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 292--3 ~ 5

-

1 10 Days 101020 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 342--3 ~ 6

-

1 10 Days 101020 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 342-6-

-

1 10 Days 101220 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 340--4 ~ 8

-

1 10 Days 101220 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 340-6 ~ 8-

-

1 10 Days 101220 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 3408--

-

1 10 Days 101320 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 340--4 ~ 8

-

1 10 Days 101320 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 340-6 ~ 8-

-

1 10 Days 101320 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 3408--

-

1 10 Days 101520 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 340--4 ~ 10

-

1 10 Days 101520 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 340-6 ~ 10-

-

1 10 Days 101520 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 3408 ~ 10--

-

1 10 Days 101620 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 390--4 ~ 10

-

1 10 Days 101620 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 390-6 ~ 10-

-

1 10 Days 101620 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 3908 ~ 10--

-

1 7 Days 101820 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 340--4 ~ 12

-

1 7 Days 101820 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 340-6 ~ 12-

-

1 7 Days 101820 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 3408 ~ 12--

-

1 10 Days 102025 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 440--4 ~ 12

-

1 10 Days 102025 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 440-6 ~ 12-

-

1 10 Days 102025 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 4408 ~ 14--

-

1 10 Days 102525 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 440--4 ~ 16

-

1 10 Days 102525 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 440-6 ~ 16-

-

1 10 Days 102525 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 4408 ~ 18--

-

1 10 Days 103025 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 435--6 ~ 20

-

1 10 Days 103025 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 435-6 ~ 20-

-

1 10 Days 103025 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)0 ~ 4358 ~ 18--

-

1 10 Days 10425 ~ 200[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)---2

-

1 10 Days 10525 ~ 300[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)---2.6 ~ 3

-

1 10 Days 10620 ~ 350[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)---3

-

1 10 Days 10820 ~ 350[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)---3 ~ 5

-

1 10 Days 101020 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)---3 ~ 6

-

1 10 Days 101020 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)--6-

-

1 10 Days 101220 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)---4 ~ 8

-

1 10 Days 101220 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)--6 ~ 8-

-

1 10 Days 101220 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)-8--

-

1 10 Days 101320 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)---4 ~ 8

-

1 10 Days 101320 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)--6 ~ 8-

-

1 10 Days 101320 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)-8--

-

1 10 Days 101520 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)---4 ~ 10

-

1 10 Days 101520 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)--6 ~ 10-

-

1 10 Days 101520 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)-8 ~ 10--

-

1 10 Days 101620 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)---4 ~ 10

-

1 10 Days 101620 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)--6 ~ 10-

-

1 10 Days 101620 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)-8 ~ 10--

-

1 7 Days 101820 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)---4 ~ 12

-

1 7 Days 101820 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)--6 ~ 12-

-

1 7 Days 101820 ~ 400[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)-8 ~ 12--

-

1 10 Days 102025 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)---4 ~ 12

-

1 10 Days 102025 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)--6 ~ 12-

-

1 10 Days 102025 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)-8 ~ 14--

-

1 10 Days 102525 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)---4 ~ 16

-

1 10 Days 102525 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)--6 ~ 16-

-

1 10 Days 102525 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)-8 ~ 18--

-

1 10 Days 103025 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)---6 ~ 20

-

1 10 Days 103025 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)--6 ~ 20-

-

1 10 Days 103025 ~ 500[Alloyed Steel] EN 1.3505 Equiv.No TreatmentInduction Hardening (58HRC~)-8 ~ 18--

-

1 10 Days 10620 ~ 350[Alloyed Steel] EN 1.3505 Equiv.Hard Chrome PlatingInduction Hardening (58HRC~)0 ~ 292--3

-

1 10 Days 10820 ~ 350[Alloyed Steel] EN 1.3505 Equiv.Hard Chrome PlatingInduction Hardening (58HRC~)0 ~ 292--3 ~ 5

Loading...

Back to Linear Shaft Category

Technical Drawing - Linear Shafts

 

Precision/One End Tapped/One End Tapped with Wrench Flats:Related Image

 

Specification Tables - Linear Shafts

 

Overview of the shaft designs as PDF

 

D Tol.
Dg6
4-0.004
-0.012
5
6
8-0.005
-0.014
10
12-0.006
-0.017
13
15
16
18
20-0.007
-0.020
25
30
 
Part NumberL
specified in 1mm Increment
M (Coarse), N (Coarse)
Selection
Wrench Flats DimensionsC
TypeDSCW1
(W/o Wrench Flats)
(D4~D30)

VFJT
VSFJT
VPFJT
VPSFJT
VRJT
(With Wrench Flats)
(D6~D30)

VFJC
VSFJC
VPFJC
VPSFJC
VRJC
425~2002          ---0.2 or Less
525~300 2.63        
625~300  3        SC=1mm Increment
SC+1≤L
SC≥0
Details of Wrench Flats >>P.112
580.5 or Less
825~300  345      7
1025~350  3456     8
1225~350   4568    1010
1325~350   4568    11
1525~350   456810   13
1625~350   456810   14
1825~350   45681012  16
2030~450   45681012  171.0 or Less
2530~450   4568101216 22
3030~450     68101216202715
For overall length L, when Mx2.5+4≥L, tap pilot holes may go through.

 

Alterations - Linear Shafts


Precision/One End Tapped/One End Tapped with Wrench Flats:Related Image

You find further options in detail under Option Overview.

Basic information

Basic Shape Solid Shaft end Shape (Left) Internal thread Shaft end Shape (Right) Straight
Shaft end Perpendicularity 0.03 Heat Treatment Induction Hardened ISO Tolerance g6

Frequently Asked Questions (FAQ)

Question:

What is the difference between a hollow shaft and a solid shaft?

Answer:

With the same size, there are three differences between a hollow shaft and a solid shaft. Hollow shafts weigh less. The inner cavity of a hollow shaft is suitable for use as a channel (cable channel). Solid shafts are a bit more rigid (higher resistance torque).

Question:

What is the minimum order of linear shafts from MISUMI?

Answer:

MISUMI supplies solid shafts, hollow shafts and precision shafts starting at a lot size of 1. This also applies to all other items in our product range.

Question:

Noises and vibrations occur with a linear shaft. In addition, there are jerky movements. What could cause this?

Answer:

In general, it may be caused if the steel shaft is not properly lubricated. In addition, an incorrectly selected diameter tolerance of the linear shafts may also make the cycle of motion more difficult. When using MISUMI linear ball bearings, a g6 shaft tolerance is recommended (tolerance recommendations may vary depending on the manufacturer).

Question:

What is the strength of a solid shaft?

Answer:

The strength of a linear shaft, although it is a solid shaft, hollow shaft or precision shaft, should always be selected in consideration of the strength of the material used.

Question:

What are the advantages of a hollow shaft over a solid shaft?

Answer:

There are various advantages of a hollow shaft compared to a solid shaft. If the outer diameter is the same, the weight of a hollow shaft is lower than that of a solid shaft. However, the cavity of the hollow shaft can also be used as a cable channel or for cooling. A hollow shaft is at the same weight or with the same cross-sectional area more rigid than a solid shaft, because the outer diameter is larger. However, the question that needs to be answered is whether the advantage is a greater room utilization or less weight.

Question:

Is a hollow shaft stiffer than a solid shaft?

Answer:

The rigidity of a hollow shaft is slightly lower with the same outer diameter than that of a solid shaft. However, with the same cross-sectional area or with the same weight, the stiffness of a hollow shaft is higher than that of a solid shaft, because the outer diameter of the hollow shaft is larger.

Question:

Why do I have running grooves on the linear shafts of my 3D printers?

Answer:

The running grooves on the linear shaft may have been created, for example, by using a linear ball bearing. To prevent grooves from forming on a steel shaft, it should be hardened and hard chromium plated, making it more durable and resistant to the wear and tear from ball bearings.

Question:

How do the flexure properties of hollow shafts and solid shafts differ?

Answer:

With an equally large outer diameter, a solid shaft has better flexure properties than an equally large hollow shaft. However, the solid shaft is not much stiffer than a hollow shaft with the same outer diameter, since the outer sections mainly carry the load. Hollow shafts with the same cross-sectional area are more rigid than solid shafts, because they have a larger outer diameter. Therefore, there is physically more material in the outer sections for the bending, which bears the loads.

Question:

I need a lacquered or matted shaft because reflections cause problems with the optics. Does MISUMI have something like that?

Answer:

MISUMI LTBC-coated linear shafts are an alternative to painted or matted steel shafts. The LTBC coating is low-reflection and has the same effect as painted and matte shafts. In addition, LTBC-coated linear shafts are more resistant to wear and tear and flaking. You can find further information on LTBC coating here .

Question:

It has been shown that a hollow shaft is stronger than a solid shaft made of the same material. Why?

Answer:

A hollow shaft with the same outer dimensions is principally not stronger than a solid shaft. However, a hollow shaft per weight unit is stronger.

Show more FAQ Close

Complementary Products

MISUMI Unit еxample related to this product

Tech Support

Technical Support
Tel:+49 69 668173-0 / FAX:+49 69 668173-360