Linear shafts / offset on one side / external thread / internal thread / undercut / spanner flat (Part Numbers - CAD Download)

Linear shafts / offset on one side / external thread / internal thread / undercut / spanner flat

Click on this image to zoom in.

Click on this image to zoom in.

  • Linear shafts / offset on one side / external thread / internal thread / undercut / spanner flat
  • Linear shafts / offset on one side / external thread / internal thread / undercut / spanner flat

Part Number

Once your search is narrowed to one product,
the corresponding part number is displayed here.

Back to Linear Shaft Category

Technical Drawing - Linear Shafts

 

Precision/One End Threaded One End Tapped with Undercut or with Undercut and Wrench Flats:Related Image

 

Basic Properties (e.g. material, hardness, coating, tolerance) - Linear Shafts

 

TypeD Tol.MaterialHardnessSurface Treatment
W/o Wrench FlatsWith Wrench Flats
VAFDVAFZg6EN 1.3505 Equiv.Effective Hardened Depth of Induction Hardening >>P.112
EN 1.3505 Equiv. 58HRC~
EN 1.4037 Equiv. 56HRC~
-
VSAFDVSAFZEN 1.4037 Equiv.
VPAFDVPAFZEN 1.3505 Equiv.Hard Chrome Plating
Plating Hardness HV750 ~
Plating Thickness: 5µ or More
VPSAFDVPSAFZEN 1.4037 Equiv.
VRFDVRFZEN 1.3505 Equiv.LTBC Plating

 

Further specifications can be found under the tab More Information.

 

Composition of a Product Code - Linear Shafts

 

Part Number-L-F-M-N-SC
VPAFD20-300-F25-M16-N12  

 

Alterations - Linear Shafts


Precision/One End Threaded One End Tapped with Undercut or with Undercut and Wrench Flats:Related Image

You find further options in detail under Option Overview.

 

Part Number:  

    3D preview is not available, because the part number has not yet been determined.

  • In order to open the 3D preview, the part number must be fixed.
Loading...
Part Number
VRFD25-[25-443/1]-F[7-60/1]-M[8,​10,​12,​16,​20]-N[4,​5,​6,​8,​10,​12,​16]
VRFD25-[25-443/1]-F[7-60/1]-M[8,​10,​12,​16,​20]-ND[6,​8,​10,​12,​16]
VRFD25-[25-443/1]-F[7-60/1]-M[8,​10,​12,​16,​20]-NSC[8,​10,​12,​14,​18]
VRFD25-[25-443/1]-F[7-60/1]-MMC[8,​10,​12,​15,​17,​20]-N[4,​5,​6,​8,​10,​12,​16]
VRFD25-[25-443/1]-F[7-60/1]-MMC[8,​10,​12,​15,​17,​20]-ND[6,​8,​10,​12,​16]
VRFD25-[25-443/1]-F[7-60/1]-MMC[8,​10,​12,​15,​17,​20]-NSC[8,​10,​12,​14,​18]
VRFD25-[25-443/1]-F[7-60/1]-MMS[10,​12,​14,​18]-N[4,​5,​6,​8,​10,​12,​16]
VRFD25-[25-443/1]-F[7-60/1]-MMS[10,​12,​14,​18]-ND[6,​8,​10,​12,​16]
VRFD25-[25-443/1]-F[7-60/1]-MMS[10,​12,​14,​18]-NSC[8,​10,​12,​14,​18]
VRFD30-[25-443/1]-F[7-72/1]-M[8,​10,​12,​16,​20,​24]-N[6,​8,​10,​12,​16,​20]
VRFD30-[25-443/1]-F[7-72/1]-M[8,​10,​12,​16,​20,​24]-ND[6,​8,​10,​12,​16,​20]
VRFD30-[25-443/1]-F[7-72/1]-M[8,​10,​12,​16,​20,​24]-NSC[8,​10,​12,​14,​18]
VRFD30-[25-443/1]-F[7-72/1]-MMC[8,​10,​12,​15,​17,​20,​25]-N[6,​8,​10,​12,​16,​20]
VRFD30-[25-443/1]-F[7-72/1]-MMC[8,​10,​12,​15,​17,​20,​25]-ND[6,​8,​10,​12,​16,​20]
VRFD30-[25-443/1]-F[7-72/1]-MMC[8,​10,​12,​15,​17,​20,​25]-NSC[8,​10,​12,​14,​18]
VRFD30-[25-443/1]-F[7-72/1]-MMS[10,​12,​14,​18]-N[6,​8,​10,​12,​16,​20]
VRFD30-[25-443/1]-F[7-72/1]-MMS[10,​12,​14,​18]-ND[6,​8,​10,​12,​16,​20]
VRFD30-[25-443/1]-F[7-72/1]-MMS[10,​12,​14,​18]-NSC[8,​10,​12,​14,​18]
VRFZ8-[25-295/1]-F[5-18/1]-M6-N[3,​4,​5]-SC[0-287/1]
VRFZ8-[25-295/1]-F[5-18/1]-MMC6-N[3,​4,​5]-SC[0-287/1]
VRFZ10-[25-345/1]-F[5-24/1]-M[6,​8]-N[3,​4,​5,​6]-SC[0-335/1]
VRFZ10-[25-345/1]-F[5-24/1]-M[6,​8]-ND6-SC[0-335/1]
VRFZ10-[25-345/1]-F[5-24/1]-MMC[6,​8]-N[3,​4,​5,​6]-SC[0-335/1]
VRFZ10-[25-345/1]-F[5-24/1]-MMC[6,​8]-ND6-SC[0-335/1]
VRFZ12-[25-345/1]-F[5-30/1]-M[6,​8,​10]-N[4,​5,​6,​8]-SC[0-335/1]
VRFZ12-[25-345/1]-F[5-30/1]-M[6,​8,​10]-ND[6,​8]-SC[0-335/1]
VRFZ12-[25-345/1]-F[5-30/1]-M[6,​8,​10]-NSC8-SC[0-335/1]
VRFZ12-[25-345/1]-F[5-30/1]-MMC[6,​8,​10]-N[4,​5,​6,​8]-SC[0-335/1]
VRFZ12-[25-345/1]-F[5-30/1]-MMC[6,​8,​10]-ND[6,​8]-SC[0-335/1]
VRFZ12-[25-345/1]-F[5-30/1]-MMC[6,​8,​10]-NSC8-SC[0-335/1]
VRFZ12-[25-345/1]-F[5-30/1]-MMS10-N[4,​5,​6,​8]-SC[0-335/1]
VRFZ12-[25-345/1]-F[5-30/1]-MMS10-ND[6,​8]-SC[0-335/1]
VRFZ12-[25-345/1]-F[5-30/1]-MMS10-NSC8-SC[0-335/1]
VRFZ13-[25-345/1]-F[5-30/1]-M[6,​8,​10]-N[4,​5,​6,​8]-SC[0-335/1]
VRFZ13-[25-345/1]-F[5-30/1]-M[6,​8,​10]-ND[6,​8]-SC[0-335/1]
VRFZ13-[25-345/1]-F[5-30/1]-M[6,​8,​10]-NSC8-SC[0-335/1]
VRFZ13-[25-345/1]-F[5-30/1]-MMC[6,​8,​10]-N[4,​5,​6,​8]-SC[0-335/1]
VRFZ13-[25-345/1]-F[5-30/1]-MMC[6,​8,​10]-ND[6,​8]-SC[0-335/1]
VRFZ13-[25-345/1]-F[5-30/1]-MMC[6,​8,​10]-NSC8-SC[0-335/1]
VRFZ13-[25-345/1]-F[5-30/1]-MMS10-N[4,​5,​6,​8]-SC[0-335/1]
VRFZ13-[25-345/1]-F[5-30/1]-MMS10-ND[6,​8]-SC[0-335/1]
VRFZ13-[25-345/1]-F[5-30/1]-MMS10-NSC8-SC[0-335/1]
VRFZ15-[25-345/1]-F[5-36/1]-M[6,​8,​10,​12]-N[4,​5,​6,​8,​10]-SC[0-335/1]
VRFZ15-[25-345/1]-F[5-36/1]-M[6,​8,​10,​12]-ND[6,​8,​10]-SC[0-335/1]
VRFZ15-[25-345/1]-F[5-36/1]-M[6,​8,​10,​12]-NSC[8,​10]-SC[0-335/1]
VRFZ15-[25-345/1]-F[5-36/1]-MMC[6,​8,​10,​12]-N[4,​5,​6,​8,​10]-SC[0-335/1]
VRFZ15-[25-345/1]-F[5-36/1]-MMC[6,​8,​10,​12]-ND[6,​8,​10]-SC[0-335/1]
VRFZ15-[25-345/1]-F[5-36/1]-MMC[6,​8,​10,​12]-NSC[8,​10]-SC[0-335/1]
VRFZ15-[25-345/1]-F[5-36/1]-MMS[10,​12]-N[4,​5,​6,​8,​10]-SC[0-335/1]
VRFZ15-[25-345/1]-F[5-36/1]-MMS[10,​12]-ND[6,​8,​10]-SC[0-335/1]
VRFZ15-[25-345/1]-F[5-36/1]-MMS[10,​12]-NSC[8,​10]-SC[0-335/1]
VRFZ16-[25-345/1]-F[5-36/1]-M[6,​8,​10,​12]-N[4,​5,​6,​8,​10]-SC[0-335/1]
VRFZ16-[25-345/1]-F[5-36/1]-M[6,​8,​10,​12]-ND[6,​8,​10]-SC[0-335/1]
VRFZ16-[25-345/1]-F[5-36/1]-M[6,​8,​10,​12]-NSC[8,​10]-SC[0-335/1]
VRFZ16-[25-345/1]-F[5-36/1]-MMC[6,​8,​10,​12]-N[4,​5,​6,​8,​10]-SC[0-335/1]
VRFZ16-[25-345/1]-F[5-36/1]-MMC[6,​8,​10,​12]-ND[6,​8,​10]-SC[0-335/1]
VRFZ16-[25-345/1]-F[5-36/1]-MMC[6,​8,​10,​12]-NSC[8,​10]-SC[0-335/1]
VRFZ16-[25-345/1]-F[5-36/1]-MMS[10,​12,​14]-N[4,​5,​6,​8,​10]-SC[0-335/1]
VRFZ16-[25-345/1]-F[5-36/1]-MMS[10,​12,​14]-ND[6,​8,​10]-SC[0-335/1]
VRFZ16-[25-345/1]-F[5-36/1]-MMS[10,​12,​14]-NSC[8,​10]-SC[0-335/1]
Part Number
Standard Unit Price
Minimum order quantityVolume Discount
Standard
Shipping Days
?
RoHS[D] Diameter (Shaft)
(mm)
[L] Length (Shaft)
(mm)
Material Surface Treatment Hardness [SC] Distance (wrench flat)
(mm)
[NSC] Size (fine thread - depth 2xN)
(mm)
[MMC] Size (fine thread)
(mm)
[MMS] Size (fine thread)
(mm)
[F] Length (stud - offset - front side)
(mm)
[ND] Size (thread - depth 3xN) [N] Size (thread - depth 2xN)
(mm)
[M] Size (thread - depth 2xM)
(mm)

-

1 9 Days 102525 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)----7 ~ 60-4 ~ 168 ~ 20

-

1 9 Days 102525 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)----7 ~ 606 ~ 16-8 ~ 20

-

1 9 Days 102525 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)-8 ~ 18--7 ~ 60--8 ~ 20

-

1 9 Days 102525 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)--8 ~ 20-7 ~ 60-4 ~ 16-

-

1 9 Days 102525 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)--8 ~ 20-7 ~ 606 ~ 16--

-

1 9 Days 102525 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)-8 ~ 188 ~ 20-7 ~ 60---

-

1 9 Days 102525 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)---10 ~ 187 ~ 60-4 ~ 16-

-

1 9 Days 102525 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)---10 ~ 187 ~ 606 ~ 16--

-

1 9 Days 102525 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)-8 ~ 18-10 ~ 187 ~ 60---

-

1 9 Days 103025 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)----7 ~ 72-6 ~ 208 ~ 24

-

1 9 Days 103025 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)----7 ~ 726 ~ 20-8 ~ 24

-

1 9 Days 103025 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)-8 ~ 18--7 ~ 72--8 ~ 24

-

1 9 Days 103025 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)--8 ~ 25-7 ~ 72-6 ~ 20-

-

1 9 Days 103025 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)--8 ~ 25-7 ~ 726 ~ 20--

-

1 9 Days 103025 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)-8 ~ 188 ~ 25-7 ~ 72---

-

1 9 Days 103025 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)---10 ~ 187 ~ 72-6 ~ 20-

-

1 9 Days 103025 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)---10 ~ 187 ~ 726 ~ 20--

-

1 9 Days 103025 ~ 443[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)-8 ~ 18-10 ~ 187 ~ 72---

-

1 9 Days 10825 ~ 295[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 287---5 ~ 18-3 ~ 56

-

1 9 Days 10825 ~ 295[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 287-6-5 ~ 18-3 ~ 5-

-

1 9 Days 101025 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335---5 ~ 24-3 ~ 66 ~ 8

-

1 9 Days 101025 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335---5 ~ 246-6 ~ 8

-

1 9 Days 101025 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335-6 ~ 8-5 ~ 24-3 ~ 6-

-

1 9 Days 101025 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335-6 ~ 8-5 ~ 246--

-

1 9 Days 101225 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335---5 ~ 30-4 ~ 86 ~ 10

-

1 9 Days 101225 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335---5 ~ 306 ~ 8-6 ~ 10

-

1 9 Days 101225 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 3358--5 ~ 30--6 ~ 10

-

1 9 Days 101225 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335-6 ~ 10-5 ~ 30-4 ~ 8-

-

1 9 Days 101225 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335-6 ~ 10-5 ~ 306 ~ 8--

-

1 9 Days 101225 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 33586 ~ 10-5 ~ 30---

-

1 9 Days 101225 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335--105 ~ 30-4 ~ 8-

-

1 9 Days 101225 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335--105 ~ 306 ~ 8--

-

1 9 Days 101225 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 3358-105 ~ 30---

-

1 9 Days 101325 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335---5 ~ 30-4 ~ 86 ~ 10

-

1 9 Days 101325 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335---5 ~ 306 ~ 8-6 ~ 10

-

1 9 Days 101325 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 3358--5 ~ 30--6 ~ 10

-

1 9 Days 101325 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335-6 ~ 10-5 ~ 30-4 ~ 8-

-

1 9 Days 101325 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335-6 ~ 10-5 ~ 306 ~ 8--

-

1 9 Days 101325 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 33586 ~ 10-5 ~ 30---

-

1 9 Days 101325 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335--105 ~ 30-4 ~ 8-

-

1 9 Days 101325 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335--105 ~ 306 ~ 8--

-

1 9 Days 101325 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 3358-105 ~ 30---

-

1 9 Days 101525 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335---5 ~ 36-4 ~ 106 ~ 12

-

1 9 Days 101525 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335---5 ~ 366 ~ 10-6 ~ 12

-

1 9 Days 101525 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 3358 ~ 10--5 ~ 36--6 ~ 12

-

1 9 Days 101525 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335-6 ~ 12-5 ~ 36-4 ~ 10-

-

1 9 Days 101525 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335-6 ~ 12-5 ~ 366 ~ 10--

-

1 9 Days 101525 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 3358 ~ 106 ~ 12-5 ~ 36---

-

1 9 Days 101525 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335--10 ~ 125 ~ 36-4 ~ 10-

-

1 9 Days 101525 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335--10 ~ 125 ~ 366 ~ 10--

-

1 9 Days 101525 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 3358 ~ 10-10 ~ 125 ~ 36---

-

1 9 Days 101625 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335---5 ~ 36-4 ~ 106 ~ 12

-

1 9 Days 101625 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335---5 ~ 366 ~ 10-6 ~ 12

-

1 9 Days 101625 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 3358 ~ 10--5 ~ 36--6 ~ 12

-

1 9 Days 101625 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335-6 ~ 12-5 ~ 36-4 ~ 10-

-

1 9 Days 101625 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335-6 ~ 12-5 ~ 366 ~ 10--

-

1 9 Days 101625 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 3358 ~ 106 ~ 12-5 ~ 36---

-

1 9 Days 101625 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335--10 ~ 145 ~ 36-4 ~ 10-

-

1 9 Days 101625 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 335--10 ~ 145 ~ 366 ~ 10--

-

1 9 Days 101625 ~ 345[Alloyed Steel] EN 1.3505 Equiv.LTBC PlatingInduction Hardening (58HRC~)0 ~ 3358 ~ 10-10 ~ 145 ~ 36---

Loading...

Back to Linear Shaft Category

Technical Drawing - Linear Shafts

 

Precision/One End Threaded One End Tapped with Undercut or with Undercut and Wrench Flats:Related Image

 

Specification Tables - Linear Shafts

 

Overview of the shaft designs as PDF

 

D Tol.
Dg6
8-0.005
-0.014
10
12-0.006
-0.017
13
15
16
18
20-0.007
-0.020
25
30
 
Part Number1mm IncrementM (Coarse)
Selection
N (Coarse)
Selection
Wrench Flats Dimensions(Y)Max.C
TypeDLFSCW1
(W/o Wrench Flats)
VAFD
VSAFD
VPAFD

VPSAFD
VRFD
(With Wrench Flats)
VAFZ
VSAFZ
VPAFZ

VPSAFZ
VRFZ
825~2955≤F≤Mx3


F-g≥Pitchx3
6      345      SC=1mm Increment

SC+ℓ1≤L
SC≥0

Details of Wrench Flats
>>P.112
783000.5 or Less
1025~34568     3456     8350
1225~3456810     4568    1010350
1325~3456810     4568    11350
1525~345681012    456810   13350
1625~345681012    456810   14350
1825~34568101216   45681012  16350
2025~44568101216   45681012  174501.0 or Less
2525~445 810121620  4568101216 22450
3025~445 81012162024   68101216202715450
 
Coarse Thread Undercut Dimension
MPitchMC(g)
61.04.22
81.256.03
101.57.7
121.759.44
162.013.0
202.516.45
243.019.6
303.525.0
Overall length L requires Nx3≤L. Shaft ends may have centering holes.

 

Alterations - Linear Shafts


Precision/One End Threaded One End Tapped with Undercut or with Undercut and Wrench Flats:Related Image

You find further options in detail under Option Overview.

Surface Limits / Hardness - Linear Shafts

 

Limits of hardness and hardening depth

The linear shafts are processed after the base material has undergone inductive hardening. Therefore, the processed surfaces may result in a deviating hardness.
In the following example, you can view the affected areas of the linear shaft, which may be affected after processing by e.g. threads, level surfaces, key surfaces and transverse bores.

 

Limitation of linear shaft induction hardening

 

Cause for deviating hardness

The raw material of the linear shaft is treated via thermal induction before grinding. Thus, a configured linear shaft can be custom-made not only cost-effectively, but also with short delivery times. The linear shaft is hardened at the boundary layer (boundary layer hardening) of the liner shaft. The depth of the hardened boundary layer depends on the material used and the diameter of the linear shaft. The following table shows the hardening depth of linear shafts.
Coatings and plating are applied to the raw material after hardening and grinding. For more information, see Coatings of the Linear Shaft.

 

Boundary layer hardening of a linear shaft

Figure of boundary layer hardening: hardened boundary layer in light gray

 

Effective hardening depth of linear shafts

Outside diameter (D)Effective hardening depth
EN 1.1191 equiv.EN 1.3505 equiv.EN 1.4125 equiv.EN 1.4301 equiv.
3-+0.5+0.5Without induction hardening
4-
5-
6 - 10+0.3
12 - 13+0.5+0.7+0.5
15 - 20+0.7
25 - 50+0.8+1

Overview of the effective hardening depth as PDF

 

Coatings of the linear shaft

The surface coating is applied to the raw material before machining the linear shaft. Thanks to their coating, the usable surface or work surface of the linear shaft is not only protected against corrosion but also against wear.
Machined positions of the linear shafts, such as plane surfaces or threads, may be uncoated, as they are added afterwards. This can lead to the machined surfaces being corroded in a linear shaft made of steel. If the linear shaft is used in a corrosive environment, it is recommended to use a stainless steel linear shaft.
The following figure shows the areas of the linear shaft that are coated (crosshatched). 

 

Surface coating after processing the linear shaft

Figure: Coating of linear shafts

 

You can find further information on surface treatment and hardness in this PDF .

 

General Information - Linear Shafts

 

Linear Shaft Selection Details

- Material: steel, stainless steel

- Coating/plating: uncoated, hard chrome plated, LTBC coated, chemically nickel-plated

- Heat treatment: untreated, inductively hardened

- ISO tolerances: h5, k5, g6, h6, h7, f8

- Precision classes: perpendicularity 0.03, concentricity (with thread and increments) Ø0.02, perpendicularity 0.20, concentricity (thread and stepper) Ø0.10

- Linearity/roundness: depends on diameter, here for the PDF

 

 

Description / basics of the linear shaft

Linear shafts are steel shafts that perform guiding tasks in combination with linear bearings, such as plain bearing bushings or linear ball bushings. Linear shaft holding functions can be adopted from shaft holders or linear ball bearing adapters. Most linear shafts are heat-treated (induction hardened) solid shafts. A special design of linear shafts is the hollow shaft, which is also called tubular shaft. Inductively hardened linear shafts have a high surface hardness and a tough core. The achievable surface hardness is approx. 55-58 HRC (see information on hardening depth). Linear shafts made of stainless steels can generally not be hardened. Therefore, these steel shafts should be chrome plated to protect them from wear.

 

Materials

Linear shafts are mainly hardened steel shafts. In addition to the selected heat treatment, the steel used in particular imparts its properties to the linear shaft, although it is a hollow shaft or a solid shaft. Therefore, special aspects such as hardness, corrosion and wear must be considered when selecting the shaft steel.

 

Coatings

To protect linear shafts from corrosion, the surface can be chemically nickel-plated. As an alternative to chemical nickel-plating, steel shafts can also be coated with LTBC. The LTBC coating is an anti-corrosive surface coating and it is a low-reflection coating, made of a 5 μm thick film of fluoropolymer, which in essence is a black film. In addition, the LTBC coating is resistant to bursting pressure by extreme or repeated bending. LTBC-coated linear shafts are thus particularly suitable for locations where corrosion or light reflections are undesirable. Linear shafts that require particularly high surface hardness and wear resistance can be hard chrome plated.

 

Function

The form and function of linear shafts differ from linear guiderails. Linear guiderails are square rails that work in combination with carriers (rotary elements, carriages) according to the rolling or sliding principle. Linear shafts on the other hand are precision-ground round steel shafts that take on a linear guide function in conjunction with linear ball bushings or plain bearing bushings (maintenance-free bushings).

 

Areas of Application

Linear shafts are intended for axial motion. Whether horizontal or vertical linear motion, all linear motions can be implemented with linear shafts. Common applications are stroke mechanisms and other applications with high demands on smoothness, precision and service life. Linear shafts can therefore be used in almost all industries of plant construction and mechanical engineering. Linear shafts are often found in 3D printers, metering equipment, measuring devices, positioning devices, alignment devices, bending devices and sorting equipment.

 

Instructions for Use / Installation  - Linear Shafts

 

For product selection, please observe the linear shaft tolerances (e.g. h5, k5, g6, h6, h7, f8) in conjunction with the diameter tolerance of the plain bearing bushing (sliding bearing) after pressing in or the running circle diameter of the linear ball bearing (ball bushing).

 

Diameter change of linear ball bushings after pressing  Inner diameter of linear ball bushings or ball bushings

 

Shaft Fasteners

 

Application Example of a Linear Shaft - Linear Shafts with Linear Ball Bushings - Linear Shafts with Shaft Holder
Application Example of a Linear Shaft Application Example - Linear Shaft with Linear Ball Bearings - Linear Ball Bearings with an Adjusting Ring
Application Example of a Linear Shaft - Linear Shaft with Shaft Holder
Application Example of a Linear Shaft - Linear Shaft with Circlip Groove - Linear Shaft with Circlip
Application Example of a Linear Shaft - Linear Shaft with Holding Washer
Application Example of a Linear Shaft - Linear Thread - Outer Threaded Linear Shaft - Linear Threaded with inner and outer threads
Application Example of a Linear Shaft - Cross Bore Linear Shaft - Inner Thread Linear Shaft
Application Example of a Linear Shaft - Cross Bore Linear Shaft - Outer Thread Linear Shaft

   

Supplementary Article

 

Shaft holder

Product range of shaft holders

 

Adjusting rings/clamping rings

Product range of adjusting rings - product range of clamping rings

 

Linear ball bearing

Product range of linear ball bearings - product range of ball sleeves - linear ball bearing with housing

 

Plain bearing bushings

Product range of sliding bearing bushings - plain bearing with housing

 

Ball guides

Ball guide product range

 

Industrial Applications

 

3D printer industry
3D printer industry
Automotive industry
Automotive industry
Pharmaceutical industry
Pharmaceutical industry
Packaging industry
Packaging industry

  

Basic information

Basic Shape Solid Shaft end Shape (Left) External thread Shaft end Shape (Right) Internal thread
Shaft end Perpendicularity 0.03 Heat Treatment Induction Hardened ISO Tolerance g6

Frequently Asked Questions (FAQ)

Question:

What is the difference between a hollow shaft and a solid shaft?

Answer:

With the same size, there are three differences between a hollow shaft and a solid shaft. Hollow shafts weigh less. The inner cavity of a hollow shaft is suitable for use as a channel (cable channel). Solid shafts are a bit more rigid (higher resistance torque).

Question:

What is the minimum order of linear shafts from MISUMI?

Answer:

MISUMI supplies solid shafts, hollow shafts and precision shafts starting at a lot size of 1. This also applies to all other items in our product range.

Question:

Noises and vibrations occur with a linear shaft. In addition, there are jerky movements. What could cause this?

Answer:

In general, it may be caused if the steel shaft is not properly lubricated. In addition, an incorrectly selected diameter tolerance of the linear shafts may also make the cycle of motion more difficult. When using MISUMI linear ball bearings, a g6 shaft tolerance is recommended (tolerance recommendations may vary depending on the manufacturer).

Question:

What is the strength of a solid shaft?

Answer:

The strength of a linear shaft, although it is a solid shaft, hollow shaft or precision shaft, should always be selected in consideration of the strength of the material used.

Question:

What are the advantages of a hollow shaft over a solid shaft?

Answer:

There are various advantages of a hollow shaft compared to a solid shaft. If the outer diameter is the same, the weight of a hollow shaft is lower than that of a solid shaft. However, the cavity of the hollow shaft can also be used as a cable channel or for cooling. A hollow shaft is at the same weight or with the same cross-sectional area more rigid than a solid shaft, because the outer diameter is larger. However, the question that needs to be answered is whether the advantage is a greater room utilization or less weight.

Question:

Is a hollow shaft stiffer than a solid shaft?

Answer:

The rigidity of a hollow shaft is slightly lower with the same outer diameter than that of a solid shaft. However, with the same cross-sectional area or with the same weight, the stiffness of a hollow shaft is higher than that of a solid shaft, because the outer diameter of the hollow shaft is larger.

Question:

Why do I have running grooves on the linear shafts of my 3D printers?

Answer:

The running grooves on the linear shaft may have been created, for example, by using a linear ball bearing. To prevent grooves from forming on a steel shaft, it should be hardened and hard chromium plated, making it more durable and resistant to the wear and tear from ball bearings.

Question:

How do the flexure properties of hollow shafts and solid shafts differ?

Answer:

With an equally large outer diameter, a solid shaft has better flexure properties than an equally large hollow shaft. However, the solid shaft is not much stiffer than a hollow shaft with the same outer diameter, since the outer sections mainly carry the load. Hollow shafts with the same cross-sectional area are more rigid than solid shafts, because they have a larger outer diameter. Therefore, there is physically more material in the outer sections for the bending, which bears the loads.

Question:

I need a lacquered or matted shaft because reflections cause problems with the optics. Does MISUMI have something like that?

Answer:

MISUMI LTBC-coated linear shafts are an alternative to painted or matted steel shafts. The LTBC coating is low-reflection and has the same effect as painted and matte shafts. In addition, LTBC-coated linear shafts are more resistant to wear and tear and flaking. You can find further information on LTBC coating here .

Question:

It has been shown that a hollow shaft is stronger than a solid shaft made of the same material. Why?

Answer:

A hollow shaft with the same outer dimensions is principally not stronger than a solid shaft. However, a hollow shaft per weight unit is stronger.

Show more FAQ Close

Complementary Products

MISUMI Unit еxample related to this product

Tech Support

Technical Support
Tel:+49 69 668173-0 / FAX:+49 69 668173-360