Linear ball bearings / flange selectable / stainless steel, steel / treatment selectable / seal selectable (SLHFR8Y)

Linear ball bearings / flange selectable / stainless steel, steel / treatment selectable / seal selectable SLHFR8Y
  • Promotional pricing
  • Volume Discount

Product Details:

Manufacturer part number: SLHFR8Y

Brand: MISUMI

Price: 19.87

Delivery time: 9 Days


Technical Data:

RoHS Information: RoHS Requirements Fulfilled

Features, Areas of Application: Low Dust

[dr] Inner Diameter: 8 mm

[L] Length (Total): 24 mm

Material of Outer Cylinder: EN 1.4125 Equiv.


  • Order quantities extended (D-JIT)
  • Stock

Part Number

Once your search is narrowed to one product,
the corresponding part number is displayed here.

SLHFR8Y

Dimensional Drawing

Round Flange
Square flange
Compact Flange
dr = 3 to 13
dr = 16 to 50

Product Specifications

Counterbored HolesTypeOuter CylinderBallsRetainerOperating Ambient Temperature[A] Accessory
Round FlangeSquare flangeCompact Flange[M] Material[H] Hardness[S] Surface Treatment[M] Material[M] Material
Opposite CounterboredLHZRLHZSLHZCEN 1.3505 Equiv.58HRC or moreEN 1.3505 Equiv.Plastic (Duracon M90 Equivalent)−20 to 80°CSeal [M] Material
Nitrile Rubber
(-20 to 120°C)
StandardLHFRLHFSLHFC
LHFR−N
No Seal
LHFS−N
No Seal
LHFC−N
No Seal
LHFRFLHFSFLHFCFStainless Steel (Stainless Steel)−20 to 110°C
LHFRRLHFSRLHFCRLow Temperature Black Chrome PlatingEN 1.4125 Equiv.Plastic (Duracon M90 Equivalent)−20 to 80°C
LHFRMLHFSMLHFCMElectroless
Nickel Plating
LHFRM−N
No Seal
LHFSM−N
No Seal
LHFCM−N
No Seal
LHFRMFLHFSMFLHFCMFStainless Steel (Stainless Steel)−20 to 110°C
SLHFRSLHFSSLHFCEN 1.4125 Equiv.56HRC or morePlastic (Duracon M90 Equivalent)−20 to 80°C
SLHFRSSLHFSSSLHFCSStainless Steel (Stainless Steel)−20 to 120°C

Specification Table

Part Number  
 LHFR8
 LHFR−N10
Flanged Linear Bushing - Single, Opposite Counterbored Hole: Related Image LHFRR8
Flanged Linear Bushing - Single, Opposite Counterbored Hole: Related Image LHFRR10L
 

(No Seal)
(Low Temperature Black Chrome Plating)
(L Type Greased)
 


[ ! ] Alternative grease types available.
drD ToleranceLHTdd1tP.C.D.WFAEccentricity
(Max.)
* 1
Balls
Rows
Perpendicularity
* 2
Basic Load RatingMass (g)
 Tolerance Surface Treatment
Not Provided
Surface Treatment
Provided
 ToleranceC (Dynamic) NCo (Static) NRound FlangeSquare flangeCompact Flange
30
−0.008
70
−0.011
0
−0.015
10±0.3193.52.54.52.11315130.00840.0086910575.16
4812201416148812786.27
510152553.563.1172017167206171314
60
−0.009
120
−0.013
0
−0.018
19282022200.0120.012206265241821
8152432242524265380372933
10190
−0.016
0
−0.021
294064.57.54.1293029372549725264
12213042323232412598765768
13233243333433510784887281
16283748383722317751180120104112
200
−0.010
320
−0.019
0
−0.025
425485.595.1434224360.01550.0158821370180145167
254059625150324069801570340300325
30456474106.6116.16058354915702740470375388
350
−0.012
520
−0.022
0
−0.030
7082676438550.0200.02016703140650560575
40608096139148.178754564216040201060880913
50801001169892568038207940220020002037
* 1. The maximum amount of misalignment between the center point of the outer diameter D and the center point of the inner diameter dr.
* 2. Perpendicularity of D to flange mounting surface.
[ ! ] Anti-rust oil is applied at the time of delivery.
[ ! ] No seal supplied for dr = 3 or 4.
[ ! ] There are 2 engraving types for products without seals. Example: Part Number: For LHFR-N10, it will be either LHFR-N10 or LHFR10-N.
Grease coating
By selecting the grease below, change to the product with grease coating is available.
TypeProduct NameMain Features
A TypeAlvania Grease S2 (by Showa Shell Sekiyu)General-purpose grease suitable for various grease lubrication locations.
Y TypeAFF (Made by THK Co., Ltd.)Grease with less particles, stable rolling resistance, and excellent fretting resistance.
G TypeLG2 (Made by NSK Ltd.)Grease with less particles, excellent wear and rust resistance.
L TypeET-100K (Made by KYODO YUSHI Co., Ltd.)Superior heat resistance and oxidation stability. Also high adhesion and cohesion with limited splash or leakage.
H TypeFGL (Lubriplate)Suitable for lubrication of equipment used in special hygienic requirements (NSF H-1 Reg. No. 043534)
[ ! ] Grease coating cannot be selected for the Type without seal.
Grease Performance Table (Reference Value)
ItemConditionsUnitMeasurement MethodA TypeY TypeG TypeL TypeH Type
ThickenerLithium TypeLithium TypeLithium TypeAromatic DiureaAluminum Complex Soap
Base OilMineral OilFine Synthetic OilMineral Oil + Synthetic Hydrocarbon OilEther Synthetic OilUSP White Oil
Base Oil
Kinematic Viscosity
40°Cmm2/sJIS K2220 2313110032105 (ASTM D-445)
100°C12.25.411.5 (ASTM D-445)
Worked PenetrationJIS K2220 7283315199280310 (ASTM D-217)
Dropping Point°CJIS K2220 8181220201260 <238 (ASTM D-217)
Evaporation Amount99°C × 22 hrwt%JIS K2220 100.20.71.40.27 (ASTM D−972)
Oil Separation100°C × 24 hrwt%JIS K2220 112.42.60.81.22.1 (ASTM D−1742)
Operating Temp.In Air°C-25 to 120-40 to 120−20 to 70−40 to 200−12 to 177

Selection Supporting Information

Fitting of Shaft O.D. and Bushing I.D.

Fitting of Bushing O.D. and Housing I.D.

Flanged Linear Bushing - Single, Opposite Counterbored Hole   Fitting of Shaft O.D. and Bushing I.D.
Flanged Linear Bushing - Single, Opposite Counterbored Hole   Fitting of Bushing O.D. and Housing I.D.
Reference: Tolerance range of MISUMI linear bushings I.D. and shaft O.D.
Reference: Tolerance range of linear bushings O.D. and housing diameter made by MISUMI
           
Dimensions (mm)Linear Bushings Single Type (LMU) I.D. ToleranceShaft (SFJ) O.D. Tolerance (g6)
0⌀3 to 5⌀6 to 16⌀20 to 30⌀35 to 50      
-0.001      
-0.002⌀3     
-0.003     
-0.004⌀4 to 6    
-0.005⌀8 to 10   
-0.006⌀12 to 18  
-0.007⌀20 to 30 
-0.008 
-0.009  ⌀35 to 50
-0.010   
-0.011    
-0.012    
-0.013      
-0.014      
-0.015       
-0.016       
-0.017       
-0.018        
-0.019        
-0.020        
-0.021         
-0.022         
-0.023         
-0.024         
-0.025         
 
     
 ProductCustomer's design
I.D.
dr
Outer Dia. DHousing Dia.
 Tolerance Tolerance H7
370
-0.009
7+0.015
0
488
51010
6120
-0.011
12+0.018
0
81515
10190
-0.013
19+0.021
0
122121
132323
162828
20320
-0.016
32+0.025
0
254040
304545
35520
-0.019
52+0.030
0
406060
508080
 
For MISUMI linear bushings, use in combination with MISUMI shafts (hardened with g6 tolerance) is recommended.
For MISUMI Linear Bushings, mounting Housing of H7 tolerance is recommended.
Bushing and Housing will be clearance fit.

Technical Information

■Calculation of Life

  • When the linear systems are in motion with loads, rolling surfaces and races are subject to repeated stress and will show stress-induced scaly damages called "flaking". The total run distance of a linear system until this flaking first appears is the life of a linear system.

Rated life can be calculated using the formula below from the basic dynamic load rating and the actual load applied to the linear bushings.

L = ( fH· fT· fCfw· CP )3· 50
L: Rated Life (km)
C: Basic Dynamic Load Rating (N)
P: Applied Load (N)
fw: Load Factor (Refer to Table-4)
fH : Hardness Factor (Refer to Fig.-1)
fT : Temperature Factor (Refer to Fig.-2)
fC : Contact Factor (Refer to Table-3)
 
Hardness Factor (fH)
Temperature Factor (fT)
When using linear systems, ample hardness of the shafts in contact with balls is needed as well.
If the ample hardness of the shafts are not obtained, the allowable loads are reduced and the life will be shortened.
When linear systems are exposed to temperature higher than 100°C, hardness will be reduced, and allowable loads and life will be reduced.
Fig. 1. Hardness Factor
Fig. 2. Temperature Factor
Flanged Linear Bushing - Single, Opposite Counterbored Hole   Fig.-1. Hardness Factor
Flanged Linear Bushing - Single, Opposite Counterbored Hole   Fig.-2. Temperature Factor
 
Contact Factor (fc)
Load Factor (fw)
Generally, more than 2 linear systems are used for 1 shaft. In this case, the load applied to each linear system will vary depending on machining accuracies and will not be equally distributed. As the result, allowable load per linear system will vary depending on the number of linear systems used on one shaft.
To calculate the load applied to the linear systems, in addition to object weight, it requires inertia force attributed to motion velocity or moment loads. Furthermore, it is necessary to accurately determine the temporal change of each. However, in reciprocating motion applications, it is difficult to obtain accurate calculations due to the effects of vibrations and shocks, in addition to those of repeated starting and stopping motions. Therefore, use the Table below in order to simplify the Life Calculations.
Table-3. Contact Factor
Table-4. Load Factor
Number of bushings on one shaftContact Factor fc
11.00
20.81
30.72
40.66
50.61
Conditions of Usefw
No external shocks or vibrations
when running in low speed: 15 m/min. or less
1.0 to 1.5
No excessive external shocks or vibrations
when running in medium speed: 60 m/min. or less
1.5 to 2.0
External shocks and vibrations given
when running in high speed: 60 m/min. or more
2.0 to 3.5
 

Life in hours can be obtained by calculating travel distance per hour.
If the stroke length and number of strokes are constant, life in hours can be calculated using the following formula.

Lh =  L· 1032· ℓs· n1· 60
Lh: Life Hours (hr), Ls: Stroke Length (m), L: Rated Life (km)
n1: Reciprocating Cycles per Minute (cpm)

Cautions/Prohibitions

(1) When mounting Linear Bushings and Housings, use Retaining Rings (Snap Rings), Stoppers, etc.

■Mounting with Retaining Ring
■Mounting with Stoppers
 

(2) Linear Bushings are not suitable for rotating motion or usage with repetitive insertion and extraction of shafts. Forced use may cause damage.

Flanged Linear Bushing - Single, Opposite Counterbored Hole. (2) Linear Bushings are not suitable for rotating motion or usage with repetitive insertion and extraction of shafts. Forced use may cause damage.
 

(3) If large moment load (offset load) is to be applied, Short/Single Type Linear Bushings are not suitable. Use of Double Type or Multiple Linear Bushings is recommended.

Flanged Linear Bushing - Single, Opposite Counterbored Hole. (3) If large moment load (offset load) is to be applied, Short/Single Type Linear Bushings are not suitable. Use of Double Type or Multiple Linear Bushings is recommended.
 

(4) When assembling with linear shafts, forcing the shaft into the bushing with angular misalignment may cause the ball retainers to deform and balls to fall out. Be sure to align the centers and insert the shaft gently.

Flanged Linear Bushing - Single, Opposite Counterbored Hole. (4) When assembling with linear shafts, forcing the shaft into the bushing with angular misalignment may cause the ball retainers to deform and balls to fall out. Be sure to align the centers and insert the shaft gently.
General Information - Linear Ball Bushings

 

Linear Ball Bushing Selection Details

- Inner diameter [dr]: 3 mm – 100 mm
- Total length [L]: 10 mm – 300 mm
- Housing material: aluminum, stainless steel (stainless steel), steel
- Ball material: stainless steel (stainless steel), steel
- Ball cage material: plastic, stainless steel (stainless steel)
- Surface treatment: without, chemically nickel-plated, LTBC
- Radial offset (μm): 50 μm – 4 μm

At MISUMI, you will find the following linear bearing versions: with locking ring with groove, with dust seal, with lubrication unit (MX), with grease nipple, housing open at the bottom/open, with clearance compensation, with flange, with centred flange, with round flange, with flattened round flange (compact flange), with square flange, with block housing, with wide barrel and ball housing, ball cage guides for linear and rotational movements (limited stroke).

 

Description/Basics

Linear ball bushings convert the rolling motion of steel balls (4) into infinite linear motion. They can implement highly precise and low-friction linear motion and can be used in almost all industries, e.g., in systems for semiconductor parts, electronic components and in food packaging.

Ball recirculating bushings are used in conjunction with linear shafts. The linear movement mechanism uses steel balls (4) for unlimited linear movement.

Linear bearing units allow linear shafts to travel indefinitely through steel balls that are constantly circulating within the running grooves directed by the outer cylinder and ball cage (3).

Compared to plain bearings, ball bushings perform linear movements with lower friction and high accuracy. They are used in many applications, such as conveyors and semiconductor manufacturing facilities.

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

 

Linear Bearing Unit Design - (1) Dust Seal, (2) Outer Cylinder, (3) Ball Cage, (4) Steel Balls

 

Dynamic friction coefficient in comparison

DesignDynamic friction coefficient (μ)
Miniature profile rail guide0.004 ~ 0.006
Profile rail guide for medium and heavy loads0.002 ~ 0.003
Cross roller guides0.001 ~ 0.003
Cross roller tables0.001 ~ 0.003
Linear ball bearing0.002 ~ 0.003
Ball cage guides0.0006 ~ 0.0012

The specified values are for comparison purposes only and are therefore not reference values.

 

Areas of Application

Linear ball bushings have a linear working direction and can be used for horizontal or vertical linear movements. Therefore, MISUMI linear ball bushings can be used in almost all industries. Since linear ball bushings are intended only for axial movement, rotational use would lead to premature fatigue or destruction of the ball bushings. For rotary movements, we therefore recommend ball cage guides, which enable not only infinite linear movements (stroke-limited) in addition to infinite rotary movements.

Common applications are lifting mechanisms or guides for cylinders. The ball bushings are also a good variant for additional guide. In addition, these linear ball bushings are often found in 3D printers, metering systems, measuring devices, positioning and alignment devices, bending devices and sorting systems.

For systems with increased particle development (e.g., dust and other abrasive particles), the linear systems should be protected with covers or bellows. The ingress of particles leads to a clumping of the lubricating grease or to significantly increased abrasion. By clumping the grease, the balls block in the ball circulation, which results in unscheduled maintenance.

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings
Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

  

Materials

Linear ball bearings consist of different materials due to their design and the individual components. MISUMI uses high-quality materials to achieve the longest possible service life. The following materials are available:

- External cylinder: stainless steel (stainless steel) ~56HRC, steel with ~58HRC
- Ball: stainless steel (stainless steel), steel
- Ball cage: plastic, stainless steel (stainless steel)
- Housing: aluminum, stainless steel (stainless steel), steel
- Seal: nitrile rubber

You can find more detailed material information in the tab Technical Drawing.

 

Coatings

To protect linear ball bushings from corrosion, the surface can be chemically nickel-plated.

As an alternative to a chemical nickel-plating, ball bushings can also be coated with LTBC. The LTBC coating (Low Temperature Black Chrome Platinum) is a surface treatment that protects against corrosion and has low reflection. The coating consists of a 5 μm thick chrome ceramic layer with fluoropolymer infusion and it deposits as a black film. In addition, the LTBC coating is crack-proof and interchangeable and is therefore resistant to delamination due to extreme or repeated bending. LTBC-coated linear ball bearings are thus particularly suitable for locations where corrosion or light reflections are undesirable.

Note: the inner wall of LTBC coated linear bushing units is not surface treated.

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

LTBC-coated linear ball bushing - state after 50 km glide test under 412N load.

 

Comparison test of corrosion protection

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

Salt water spray test according to JIS H8502. Test piece: simple flanged linear ball bushing
(1) EN 1.3505 equiv., (2) EN 1.4125 equiv., (3) chemically nickel-plated, (4) LTBC coating, (hr = duration in hours)

 

Instructions for Use / Installation Information - Linear Ball Bushings

 

Instructions for use

- MISUMI linear bearings should be used in conjunction with MISUMI linear shafts.
- We recommend using a hardened linear shaft in the g6 tolerance.
- An additional hard chrome plating of the linear shaft makes it more wear-resistant.
- When installing ball bushings in housings, we recommend an H7 housing tolerance. Too close a tolerance will reduce the internal contact travel [dr] to the shaft and can lead to increased wear and premature failure.
- The utilisation of two ball bushings on a steel shaft improves the shaft guide in a system. However, if the angular errors are too high, a self-aligning linear ball bushing should be selected.
- When utilising two linear shafts, the drive should be centred in the system to avoid unnecessary stresses/lever effects.
- The service life, also called nominal service life, should be calculated using the present load case. Here you can perform your service life calculation.
- Depending on local conditions such as temperature, humidity and gases, a variant made of stainless steel or an LTBC coating is recommended.
- When the linear shafts bend sharply, a self-aligning/self-adjusting linear ball bushing should be selected.

 

Installation Information

General installation instructions for linear ball bushings and linear shafts

MISUMI linear ball bushings should be used in conjunction with MISUMI linear shafts (hardened, tolerance g6).

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

MISUMI tolerance range: inner diameter linear ball bushings (LMU) and outer diameter linear shafts (SFJ).

 

General installation instructions for linear ball bushings and housings

MISUMI linear ball bushings should be used in conjunction with MISUMI housings (tolerance H7).

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

MISUMI tolerance range: outer diameter of linear ball bushing and inner diameter of housing.

 

Standard linear ball bushing installation instructions

1. When installing standard linear ball bushings, you can use the following locking means: retaining rings (clamping rings), stoppers

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

(1) retaining rings, (2) housing, (3) stopper/LMST fixing plate

 

2. Ball bushings are not suitable for rotary motion and applications requiring repetitive insertion and removal of linear shafts. Such a misuse of the linear ball bushing could damage the recirculating ball bushing.

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

 

3. Simple linear ball bushings are not suitable for large torque loads (offset load/lever effect). The use of double or multiple linear bushings is recommended for these load cases.

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

(1) Linear ball bushing with two grooves

 

4. When assembling linear shafts, forceful slanted insertion into the linear ball bushing can cause the ball cage to bend and the balls to fall out. Be sure to centre the steel shaft to the linear ball bushing before inserting the steel shaft into the linear ball bushing.

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

 

Installation instructions for linear ball bushings with stopper/fixing plate

Through the stopper plates, the versions can be designed independently of the housing length.

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

(1) Attachment, (2) linear ball bushing – standard, (3) linear shaft, (4) LMST fixing plate

 

The stopper plates enable the ball sleeve and linear shaft to be installed flush against the end faces.

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

(1) Linear shaft, (2) housing, (3) linear ball bushing – standard, (4) spacer sleeve LBS/LBSA for linear ball bushings, (5) LMST fixing plate

 

The LMST fixing plates can also be used to lock linear bushings in place.

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

(2) housing, (4) LMST fixing plate

 

Assembly Instructions for Linear Ball Bushings with Flange and Lubrication Unit MX

When fastening the linear ball bushing with the lubrication unit MX, do not insert the housing of the lubrication unit as guide as shown in (2), as this can damage the housing. Instead, use the flange and guide version as shown in (3).

Do not disassemble the linear ball bushing with flange and lubrication unit MX, as this will impair function.

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

 

Assembly Instructions for Linear Ball Bushings with Housing and without Cylinder Pin Hole

During interface assembly, centring on the lateral reference surface can be eliminated by means of the cylinder pin holes.

This reduces the machining effort of the upper plate to be mounted on the block.

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings
Linear ball bushing with housing
Positioning with plate end cover
Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings
Linear ball bushing with housing
Positioning with cylinder pins

  

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings
Linear ball bushing with housing (wide version)
Positioning with plate end cover
Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings
Linear ball bushing with housing (wide version)
Positioning with cylinder pins

  

  

Maintenance - Linear Ball Bushings

 

General Maintenance Instructions

Grease the rows of balls inside the ball bushing before use. Then grease regularly during use. Grease reduces friction by forming a layer between the balls and rolling shaft surfaces and prevents seizing. Loss of grease and degradation of grease shorten the service life of linear guides.

- Recommended grease: lithium soap grease
- Recommended lubrication interval: every 6 months
*Every 3 months for extended work or every 1000 km. Maintenance intervals vary depending on the application and ambient conditions.

 

Lubrication

Linear ball bushings from MISUMI are delivered coated with a corrosion protection oil. Exceptions to this are the designs with lubrication unit MX. After removing the anti-corrosion oil, we recommend lubricating the bearings.

If you select one of the following lubricants in the configurator, you can order pre-lubricated versions. The versions L, G and H are prefilled with grease, whereby L and G offer a strong reduction in particle formation by means of a suitable grease distribution during operation (see quantitative comparison of particle formation below). Lubrication units MX are filled with lithium soap grease.

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

 

Assembly of the lubrication unit MX

The lubrication unit MX is equipped with a fibre insert with lubricant. The capillary effect allows the lubricant to be properly applied to contact surfaces. For this purpose, a constant oil film is formed between balls and steel shaft, which significantly prolongs the lubrication intervals.

 

Linear ball bearings - linear bearings - recirculating ball bushing - recirculating ball bushings - linear bearing unit - linear bearing units - ball bushing - ball bushings

Recirculation ball bushing with lubrication unit - (1) MX Lubrication Unit, (2) MX Lubrication Unit - Plastic Housing, (3) Lubricant Pads, (4) Dust Seal, (5) Balls, (6) Linear Shaft

 

Properties of the MX lubrication unit

Longer maintenance intervals: the long-lasting lubricant performance leads to a significant reduction in maintenance, especially in machine and equipment environments where lubrication is difficult to achieve.
Environment: the MX lubrication unit helps reduce lubricant consumption and thus protects the environment.
Cost benefit: it contributes to reducing maintenance costs and failure rate caused by failing to lubricate.
Less effort: it is not necessary to refill the lubricant prior to use, since the ball parts are already filled with a lithium soap-based grease in addition to the lubrication unit.

 

Comparison test of linear ball bearings and linear ball bearings with lubrication unit

Test conditions:
- Sample:
linear ball bushing LMU12 with rust protection oil and linear ball bushing with lubrication unit LMU-MX12
- Effective load: 206N (50% of the dynamic load rating of 412N)
- Average speed: 42 m/min (0.7 m/s)
- Stroke: 100 m
- Lubricant: lubricating grease, only initial filling (only LMU-MX12)
- Shaft material: EN 1.3505 Equiv. (58HRC)
- Duration: 24-hour continuous operation
*The above test conditions serve only as reference values and cannot be considered as a manufacturer warranty.

 

Test result:

With an effective test load of 50% of the load-carrying capacity of 412N, the design with the MX lubrication unit could achieve a continuous output of 2.5-fold longer than with no MX lubrication unit.
*Since the 2007 catalogue, the data have been updated after the safety limit has been confirmed by further data from test results.

 

Linearkugellager - Linearlager - Kugelumlaufbuchse - Kugelumlaufbuchsen - Linearlagereinheit - Linearlagereinheiten - Kugelbuchse - Kugelbuchsen

Endurance test result - standard linear ball bearing LMU, linear ball bearing LMU-MX with lubricant unit

 

Supplementary Article

 

Linear Shaft

Linearkugellager - Linearlager - Kugelumlaufbuchse - Kugelumlaufbuchsen - Linearlagereinheit - Linearlagereinheiten - Kugelbuchse - Kugelbuchsen

 

Retaining Ring

Linearkugellager - Linearlager - Kugelumlaufbuchse - Kugelumlaufbuchsen - Linearlagereinheit - Linearlagereinheiten - Kugelbuchse - Kugelbuchsen

 

Set Collar / Clamping Ring

Linearkugellager - Linearlager - Kugelumlaufbuchse - Kugelumlaufbuchsen - Linearlagereinheit - Linearlagereinheiten - Kugelbuchse - Kugelbuchsen

 

Accessories for Linear Ball Bearing

Linearkugellager - Linearlager - Kugelumlaufbuchse - Kugelumlaufbuchsen - Linearlagereinheit - Linearlagereinheiten - Kugelbuchse - Kugelbuchsen

 

Shaft Holder

Linearkugellager - Linearlager - Kugelumlaufbuchse - Kugelumlaufbuchsen - Linearlagereinheit - Linearlagereinheiten - Kugelbuchse - Kugelbuchsen

 

Industrial Applications
3D printer industry
Linearkugellager - Linearlager - Kugelumlaufbuchse - Kugelumlaufbuchsen - Linearlagereinheit - Linearlagereinheiten - Kugelbuchse - Kugelbuchsen
Automotive industry
Linearkugellager - Linearlager - Kugelumlaufbuchse - Kugelumlaufbuchsen - Linearlagereinheit - Linearlagereinheiten - Kugelbuchse - Kugelbuchsen
Pharmaceutical industry
Linearkugellager - Linearlager - Kugelumlaufbuchse - Kugelumlaufbuchsen - Linearlagereinheit - Linearlagereinheiten - Kugelbuchse - Kugelbuchsen
Packaging industry
Linearkugellager - Linearlager - Kugelumlaufbuchse - Kugelumlaufbuchsen - Linearlagereinheit - Linearlagereinheiten - Kugelbuchse - Kugelbuchsen

Part Number:  

    3D preview is not available, because the part number has not yet been determined.

  • In order to open the 3D preview, the part number must be fixed.
Loading...
Part Number
SLHFR8Y
Part Number
Standard Unit Price
Minimum order quantityVolume Discount
Standard
Shipping Days
?
RoHSRoHS Information Features, Areas of Application [dr] Inner Diameter
(mm)
[L] Length (Total)
(mm)
Material of Outer Cylinder Outer Cylinder Surface Treatment Grease Coating [D] Outer Diameter
(mm)
Basic Load Rating Dynamic Rating (Detail)
(N)
Basic Load Rating Static Rating
(N)
Tolerance of Inscribed Circle (Minus Side)
(mm)
Eccentricity
(μm)
Basic Rated Load, Dynamic Rating Flange Shape Ball Material Retainer Material Seals Counterbored Hole

19.87 €

1 Available 9 Days -RoHS Requirements FulfilledLow Dust824EN 1.4125 Equiv.No Surface Treatment[Grease coating] Y Type: AFF (Low dust generation, manufactured by THK)15-380-0.00912265Round FlangeEN 1.4125 Equiv.Plastic (Duracon M90 Equivalent)With SealStandard

Loading...

  1. 1

Basic information

Type2 Standard Flange Style Standard Number of Linear Ball Bearings Single
Linear Motion / Rotational Motion Linear Bushing (Linear Motion Only)

This page is Linear ball bearings / flange selectable / stainless steel, steel / treatment selectable / seal selectable, part number SLHFR8Y.
You can find the detail information about specifications and dimensions on part number SLHFR8Y.

Variation of this product

Part Number
LHFC-N16
LHFC-N20
LHFC-N25
SLHFRS10
SLHFRS10A
SLHFRS10G
Part NumberStandard Unit PriceMinimum order quantityVolume DiscountStandard
Shipping Days
?
RoHSRoHS Information Features, Areas of Application [dr] Inner Diameter
(mm)
[L] Length (Total)
(mm)
Material of Outer Cylinder Outer Cylinder Surface Treatment Grease Coating [D] Outer Diameter
(mm)
Basic Load Rating Dynamic Rating (Detail)
(N)
Basic Load Rating Static Rating
(N)
Tolerance of Inscribed Circle (Minus Side)
(mm)
Eccentricity
(μm)
Basic Rated Load, Dynamic Rating Flange Shape Ball Material Retainer Material Seals Counterbored Hole

9.00 €

1 Available Same day

Stock

10RoHS Requirements FulfilledNot Applicable1637[Steel] EN 1.3505 Equiv.No Surface TreatmentNot Provided287751180-0.00912775Compact FlangeEN 1.3505 Equiv.Plastic (Duracon M90 Equivalent)No SealStandard

10.70 €

1 Available Same day

Stock

10RoHS Requirements FulfilledNot Applicable2042[Steel] EN 1.3505 Equiv.No Surface TreatmentNot Provided328821370-0.0115882Compact FlangeEN 1.3505 Equiv.Plastic (Duracon M90 Equivalent)No SealStandard

15.26 €

1 Available 5 Days 10RoHS Requirements FulfilledNot Applicable2559[Steel] EN 1.3505 Equiv.No Surface TreatmentNot Provided409801570-0.0115980Compact FlangeEN 1.3505 Equiv.Plastic (Duracon M90 Equivalent)No SealStandard

16.70 €

1 Available Same day

Stock

10RoHS Requirements FulfilledCorrosion and Chemical Resistance1029EN 1.4125 Equiv.No Surface TreatmentNot Provided19372549-0.00912372Round FlangeEN 1.4125 Equiv.Stainless SteelWith SealStandard

24.33 €

1 Available 9 Days -RoHS Requirements FulfilledCorrosion and Chemical Resistance1029EN 1.4125 Equiv.No Surface Treatment[Grease coating] A Type: Alvania S2 (For general-purpose industrial use)19-549-0.00912372Round FlangeEN 1.4125 Equiv.Stainless SteelWith SealStandard

30.87 €

1 Available 9 Days 10RoHS Requirements FulfilledCorrosion and Chemical Resistance / Low Dust1029EN 1.4125 Equiv.No Surface TreatmentNot Provided19372549-0.00912372Round FlangeEN 1.4125 Equiv.Stainless SteelWith SealStandard

Complementary Products

MISUMI Unit еxample related to this product

Tech Support

Technical Support
Tel:+49 69 668173-0 / FAX:+49 69 668173-360